

## Histology and ash analysis of *Gentiana Kurroo* Royle – an endangered medicinal plant

MC BEHERA and R RAINA\*

Krishi Vigyan Kendra, Boudh, at Paljhor, Salunki, District Boudh, Orissa

\*Department of Forest Products

Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP

### ABSTRACT

*Gentiana kurroo* Royle, a potent temperate Indian bitter drug, is valued as bitter tonic, antiperiodic, expectorant, antibilious, astringent, stomachic, anthelmintic, blood purifier and carminative. Because of high demand and limited supply from natural resource, it is known to be adulterated with the roots of *Picrorrhiza kurroa*, *Gentiana tenella*, *G decumbens* etc. A perusal of literature reveals that no pharmacognostic tool is available for proper diagnosis of crude drugs of karroo. Keeping this in view the present study was carried out in the Department of Forest Products, College of Forestry, Dr YS Parmar university of horticulture and forestry, Solan, HP. On macroscopic study, it was observed that after secondary growth, rhizome splits anomalously into four parts at a distance of  $2.02+0.435$  cm near collar region. Leaf was found to be dorsiventral, stomata anamocytic, and present only on the lower surface. Stomatal index ranged between 24.26 and 25.78 and palisade ratio was 5.68. Xylem elements in roots were polyarch and radially arranged. The air dried rhizome after incineration gave 4.06 per cent of total ash (cremish colour), 2.78 per cent of acid soluble ash and 8.03 per cent of sulphated ash. Calcium content was 0.28 per cent. These parameters can be used as identification tool for testing the purity of raw material of *G kurroo*.

**Keywords:** Anatomy, stomatal index, palisade ratio, ash analysis

### INTRODUCTION

*Gentiana kurroo* Royle (family Gentianaceae) is an endangered bitter drug plant in Indian system of medicine (Fig 1A). Rhizomes and roots of this plant is valued as bitter tonic, antiperiodic, expectorant, antibilious, astringent, stomachic, anthelmintic, blood purifier and carminative (Kirtikar and Basu 1935). It is also reported to be used for curing skin diseases

(leucoderma), bronchial asthma and urinary infections (Chopra et al 1956, Anon 1956). Because of its high demand in international market and limited supply from natural resources, it's known to be adulterated/ substituted with roots of *Picrorrhiza kurroa*, *G tenella*, *G decumbens* etc (Datta and Mukerji 1949, Anon 1956). Anatomical details and ash analysis are pharmacognostically important parameters for judging the purity and authenticity of

crude drugs (Trease 1949). Such studies along with other parameters help in correct identification of the drugs. A perusal of literature reveals that complete data regarding the aforesaid parameters of official parts of *G kurroo* are scanty. Keeping this in view the present study was contemplated.

## MATERIAL AND METHODS

Plant materials was collected from healthy plants from natural habitat, washed thoroughly, cut into small pieces and preserved in Formalin Acetic Alcohol (FAA) solution at room temperature. Hand sectioning method (with the help of sharp razor) was adopted. Thin and uniform sections were stained as per the schedule given by Johanson (1940), mounted in DPX mountant, covered by cover slip and observed under microscope. Type and arrangement of cells were studied as per the details given by Esau (1953) and Fahn (1967). The different types of cells were measured by using ocular and stage micrometer and reported in micron. The stomatal studies were made from freshly peeled epidermal (lower) layer. The fresh peels were mounted in plain water covered with cover slip and sealed with paraffin wax. The size of the stomata was measured with the help of ocular and stage micrometer. The stomatal index was determined using the following formula based on 50 readings:

$$I = S / (E+S) \times 100$$

Where  $I$  = Stomatal index,

$E$  = No of epidermal cells in the same area,

$S$  = No of stomata/unit area

The type of stomata was determined on the basis of stomatal classification as given by Fahn (1967). The palisade ratio was determined by counting the number of palisade cells below four continuous epidermal cells in a dechlorophylled leaf. The palisade ratio was calculated on single epidermal cell basis and was based on 40 observations. Palisade cells which were less than half inside the observed epidermal cells were not counted while cells which were more than half were counted.

For getting total ash percentage plant materials (root and rhizome) were washed thoroughly, cut into small pieces, sundried for four days and oven dried at 70°C till consistency in weight was observed. Three gram of this dried powdered mass was kept in a silica crucible and burned in a muffle furnace maintained at a temperature of 800°C for 24 hour. After cooling, the crucible with ash was weighed, ash content was calculated and reported in percentage.

For calculating acid insoluble ash, crucible containing plant material (3 gm air dried powdered mass) was saturated with dilute hydrochloric acid (10% w/w), boiled over water bath for few minutes and then filtered by using Whatman-1 filter paper. The residue along with filter paper was ignited at a temperature of 450°C for four

hours. After cooling acid insoluble ash was calculated and reported in percentage. Similarly, sulphated ash percentage was calculated by digesting the plant material with concentrated sulphuric acid. The calcium content of ash was calculated by using Elmer atomic absorption spectrophotometer model 2380 and reported in percentage.

## RESULTS

The anatomy of root, rhizome and leaf showed the typical dicotyledon pattern. Transverse section of rhizome of *G kurroo* revealed epidermis, hypodermis, cortex, vascular region and pith occurring in that order (Fig 2A). The epidermis consisted of single layer of wavy rectangular or flattened closely packed cells. The outer walls of these cells were thickened and cutinized. Below the epidermis, hypodermis formed a more or less distinct zone consisting of four to five layers of thin walled living cells. These cells were oval to rectangular in shape and tightly packed without any intercellular space. Cortex were multilayered (14-16 layered) and consisted of more or less round in shaped parenchymatous cells with intercellular air spaces. Endodermis and pericycle layer were not distinguishable. Cells of outer layer of cortex were randomly arranged while as those of inner layers are radially arranged. The vascular system consisted of xylem and phloem forming a distinct vascular ring. Xylem elements are polyarch and radially arranged while as

phloem elements were tangentially arranged. Pith consisting of oval, round or polygonal shaped living thin walled cells, was more elaborate and occupied more space at the centre of rhizome. The qualitative and the quantitative characters of different kind of cells in rhizome are given in Table 1. On macro-observation, the older rhizome (more than 3-4 yrs old plants) showed an interesting feature of forking at a distance of  $2.02 +0.435$  cm from collar region (Fig 1B). The transverse section of rhizome just above the splitting zone and the individual splits revealed that before splitting cambial growth was more concentrated at four corners. The medullary extension grew outward extending up to the point where the cambial growth was less. As the vascular cambium sufficiently grew enough, schizogenous splitting by the separation of cork cambium started and extended towards the medullar zone making a 'u' shaped notch. Both splitting and epidermal layer formation went simultaneously and the rhizome was divided into two parts. The same process was continued in the two newly formed segments and finally rhizome was forked into four parts (Fig 2B & C). In cross section the individual splits of rhizome were characterized by a thin single layer of epidermis, hypodermis, vascular cambium with xylem and phloem elements towards the inner side. The pith cells were present towards one side below xylem/phloem elements (Fig 2D).

Microscopic study of root of *G. kurroo* in cross section showed that anatomically it can be distinguished into epiblema, hypodermis, cortex and vascular cylinder (Fig 3A). Epiblema, the outermost layer of root consisted of single layered thin walled rectangular to oval shaped cells. These cells were closely packed and cutinized with a wavy outline. Hypodermis was characterized by four to six layers of square or rectangular shaped closely packed thin walled living cells. Cortex consisted of 18 to 26 layers of thin walled round, polygonal shaped living cells. Cells in outer layers of cortex were randomly arranged while as those of inner layers were radially arranged. Vascular cylinder was characterized by a distinct cambial ring with xylem elements distributed in a scattered

fashion through closely packed wood parenchyma. Xylem was broad and consisted of large tracheae. Tracheids were arranged singly or in groups. The qualitative and quantitative characters of different kinds of cells in cross section of root are given in Table 2.

Cross section of dorsiventral leaf of *Gentiana kurroo* revealed that palisade cells occurred towards the upper surface and spongy parenchyma towards the lower surface (Fig 3B). The stomata were present only on the lower surface and were of anamocytic or ranunculaceous type (Fahn 1967) and the stomatal index ranges between 24.26 to 25.78. The palisade ratio (ie number of palisade cells corresponding to one epidermal cell) was found to be 5.62.

Table 1. Qualitative and quantitative characters of different kinds of cells in cross section rhizome of *G. kurroo*

| Region                   | Type of cells in cross section        | Dimension (μm)                                     |
|--------------------------|---------------------------------------|----------------------------------------------------|
| Epidermal layer          | Single layered                        | 28.87+1.21                                         |
| Epidermal cell           | Rectangular flattened, closely Packed | 27.75+1.98 x 31.45+4.13                            |
| Hypodermal layer         | Four-five layered                     | 103.45+3.72                                        |
| Hypodermal cells         | Oval, rectangular, tightly packed     | 17.50.51 x 20.0±0.71                               |
| Cortical portion         | Fourteen-sixteen layered              | 262.12±0.03                                        |
| Cortical cells           | Round, loosely radially arranged      | 15.00±0.79 x 22.00±0.84 to 37.50±0.71 x 49.00±1.82 |
| Endodermis and pericycle | Not clearly distinguished             | —                                                  |
| Xylem                    | Rectangular, polygonal                | 18.132.22 x 19.34+1.75                             |
| Phloem                   | Rectangular, squarish, polygonal      | 15.252.23 x 15.75+2.19                             |
| Pith                     | Oval, round                           | 52.07±1.51 x 59.54±3.43                            |

Histology and ash analysis of *G kurroo*

Table 2. Qualitative and quantitative characters of different kinds of cells in cross section of root of *G kurroo*

| Region           | Type of cells in cross section          | Dimension (μm)                                     |
|------------------|-----------------------------------------|----------------------------------------------------|
| Epiblema         | Single layered, wavy outline            | —                                                  |
| Epiblema cell    | Rectangular, oval shaped                | 30.25±1.95 x 46.75±3.18                            |
| Hypodermis layer | Four-six layered                        | 139.81±2.14                                        |
| Hypodermal cell  | Rectangular, squarish shaped            | 18.00±4.15 x 37.50±1.17                            |
| Cortex           | Eighteen-Twentysix layered              | 297.62±0.14                                        |
| Cortical cell    | Round, polygonal shaped                 | 11.07±0.85 x 15.35±0.61 to 22.00±0.44 x 33.00±1.09 |
| Trachid          | Rectangular, polygonal                  | 36.50±1.79 x 38.50±1.95                            |
| Xylem            | Polygonal, scattered in wood parenchyma | 30.0±1.0 x 31.00±1.14                              |
| Wood parenchyma  | Round, closely packed                   | 24.22±0.95 x 25.10±0.79                            |
| Phloem           | Polygonal                               | 15.8±1.2 x 16.00±1.14                              |

Table 3. Qualitative and quantitative parameters of different kinds of cells in cross section of leaf of *G kurroo*

| Region              | Type of cells in cross section                                | Dimension (μm)                                     |
|---------------------|---------------------------------------------------------------|----------------------------------------------------|
| Cuticle layer       |                                                               |                                                    |
| Upper surface       |                                                               | 10.93±0.70 to 12.80±0.84                           |
| Lower surface       |                                                               | 4.00± 0.65 to 7.25± 0.41                           |
| Epidermal cells     |                                                               |                                                    |
| Upper surface       | Oval, round, compactly arranged                               | 39.14±1.79 x 50.93±2.33 to 44.57±1.67 x 54.57±1.89 |
| Lower surface       | Oval round, compactly arranged                                | 21.6±0.44 x 39.75±1.88 to 14.75±0.98 x 18.00±1.91  |
| Palisade parenchyma | Two-three layered, elongate, prismatic and compactly arranged | 14.720.92 x 34.20±1.42                             |
| Palisade ratio      | —                                                             | 5.62±0.53                                          |
| Spongy parenchyma   | Oval, round, loosely arranged                                 | 30.00±1.41 x 32.40±1.54                            |
| Xylem               | Polygonal, diarch                                             | 9.40±0.33 x 15.50±0.44                             |
| Phloem              | Polygonal                                                     | 6.50±0.57 x 16.00±1.13                             |
| Stomata             | Present on lower surface only anomocytic/ranunculaceous       | 37.86±0.99 x 50.40±0.91                            |
| Stomatal index      | —                                                             | 25.2±0.58                                          |

The qualitative and quantitative characters of different kinds of cells present in cross section of leaf are given in Table 3.

The rhizome ash obtained as a result of incineration of known quantity of air dried rhizome was analysed for total ash, sulphated ash, acid soluble, water soluble ash percentage and calcium content and the results are presented in Table 4.

Table 4. Rootstock ash analysis of *G kurroo*

| Parameters        | Quantity (%) |
|-------------------|--------------|
| Total ash         | 4.06+0.36    |
| Sulphated ash     | 8.03+0.77    |
| Acid soluble ash  | 2.78+0.06    |
| Water soluble ash | 0.37+0.21    |
| Calcium           | 0.28+0.01    |

## DISCUSSION

The anatomical studies of rhizome, root and leaf of *G kurroo* follow the typical dicotyledonous pattern (Esau 1953, Fahn 1967). On macro-observation, it was found that the older rhizome was split into four parts seemingly merging into a single structure near the collar portion, enclosed in an outer layer of periderm. The presence of oil globules and small calcium oxalate crystals in the cortical cells of rhizome, as reported by Satyavati et al (1976) could not be observed in the present study. However, their observation of more or less rectangular shaped endodermal cells is

confirmed. There is some confusion regarding the type of xylem present in its roots. While as Satyavati et al (1976) reported tri or tetrarch xylem, Datta and Mukherji (1949) reported xylem strands scattered through wood parenchyma. In the present study, xylem appeared to be scattered without any arch condition (Fig 3A). Details regarding stomata type, stomatal index and palisade ratio in this species are being reported for the first time.

The quality and quantity of ash obtained as a result of incineration of air dried crude drugs is an important pharmacognostic parameter to judge the authenticity and purification of crude drugs (Trease 1949). Often such data are presented to test the purity of a drug sample. In the present investigations, total ash percentage of 4.06 was obtained from the rootstock of *G kurroo*. The acid soluble, water soluble and sulphated ash percentage was found to be 2.78, 0.37 and 8.03 per cent respectively (Table 4). The calcium content of rootstock was found to be 0.28 per cent. Data regarding such parameters are being reported for the first time except for total ash percentage. Earlier reports (Anon 1956, Chopra et al 1958, Datta and Mukerji 1949, Nadkarni 1976) give a total ash percentage of 0.7 per cent. However, a perusal of these reports reveals that the figure of 0.7 per cent has been reproduced by Anon (1956), Chopra et al (1958) and Nadkarni (1976) following the observation of Datta and Mukerji (1949). Doubt

regarding the authenticity of this observation due to improper drying of the rhizome sample has been raised by Anon (1956) and Nadkarni (1976). The present observation of 4.06 per cent of ash content may appear to be quite large as compared to 0.7 per cent reported by earlier workers (Anon 1956, Chopra et al 1958, Datta and Mukerji 1949, Nadkarni 1976) but the doubt regarding the proper drying of the rhizome sample raised by Anon (1956) and Nadkarni (1976) indicates that the earlier observation of 0.7 per cent may be erroneous. Although this observation was made several times during the present study but further confirmation would be needed to establish the total ash percentage in this species.

## REFERENCES

Anonymous 1956. The Wealth of India: A dictionary of Indian raw material and industrial products. Publication and Information Directorate, CSIR, New Delhi, Vol 4, pp 123-125.

Chopra RN, Chopra IC, Handa KL and Kapur LD 1958. Indigenous drugs of India. Dhur and Son Pvt Ltd, Calcutta, pp 181-183.

Chopra RN, Nayar SL and Chopra IC 1956. Glossary of Indian Medicinal Plants, CSIR, New Delhi, 124p.

Datta SC and Mukerji B 1949. Pharmacognosy of Indian root and rhizome drugs. Pharmacognosy Laboratory Bulletin No 1, Ministry of Health, Government of India Press, pp 95-97.

Esau Katherine 1953. Plant anatomy. John Wiley and Sons, New York, Inc, pp 338-411.

Fahn A 1967. Plant anatomy. Pergamon Press, Oxford, pp 162-240.

Johanson DA 1940. Plant microtechniques. McGraw Hill, New York, pp 178-180.

Kirtikar KR and Basu BD 1935. Indian Medicinal Plants (II ed). Bishen Singh Mahendra Pal Singh, Dehradun, Periodicals expert, Vol III pp 1661-1662.

Nadkarni KM 1976. *Gentiana kurroo* R. In: Indian Materia Medica. Popular Prakashan, Bombay, pp 573-576.

Satyavati GV, Raina MK and Sharma M 1976. Medicinal plants of India. ICMR, New Delhi, Vol I, 429p.

Trease GE 1949. A Text Book of Pharmacognosy. Tindall and Cox, London, 640p.

Received: 3.3.2011

Accepted: 25.3.2011

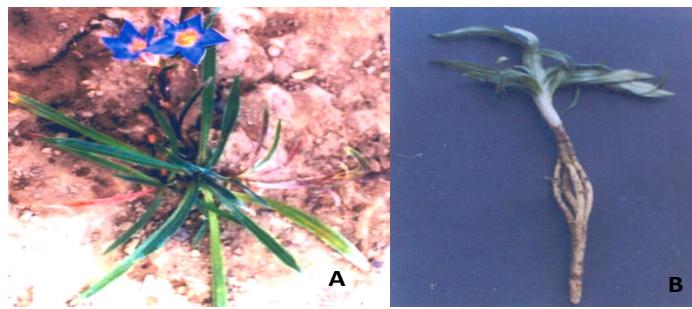



Fig 1 A : *G kurroo* at flowering B Rhizome splitting

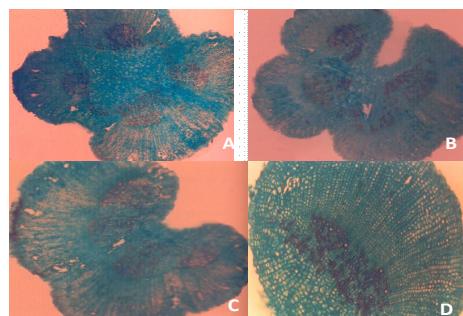



Fig 2 A. T S Rhizome    B. T S Rhizome through splitting zone stage-I  
C. T S Rhizome through splitting zone stage-II  
D. T S Rhizome (single split)

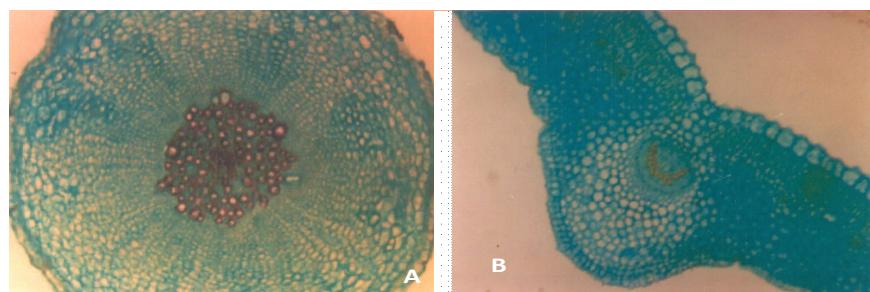



Fig 3 A. T S root B. T S leaf (close up at mid rib region)