

Effect of vegetable oil seed treatment on seed mycoflora of pea, *Pisum sativum* L

A BHARDWAJ, SC VERMA, NARENDER K BHARAT* and MEENA THAKUR

Department of Environmental Science

*Department of Plant Pathology

Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan 173230 HP

Email for correspondence: anuja.21june@gmail.com

ABSTRACT

Effect of seed treatment with six vegetable oils viz mustard, Neem, Karanj, cedar, apricot and olive was studied on the incidence of seed mycoflora of pea during the process of germination. Almost all the vegetable oils treatments resulted in significant reduction in the incidence of various fungi. The seeds treated with Neem oil had minimum incidence of *Aspergillus* sp (10.67%) followed by mustard (13.33%) irrespective of concentrations. Similar trend was observed in case of *Alternaria* sp where 2.67 per cent incidence was recorded on seeds treated with Neem oil though all the treatments were equally effective. Seeds treated with apricot oil had highest incidence of *Alternaria* sp (5.00%). No incidence of *Mucor* sp was observed in Neem and mustard treated seeds whereas 0.67, 1.00, 1.11 per cent incidence was recorded on seeds treated with Karanj, cedar and olive oils respectively. Apricot oil treatment proved least effective against *Mucor* sp. Mustard, Neem and Karanj provided almost complete protection against *Fusarium* sp whereas olive (0.22%), cedar (0.33%) and apricot (0.89%) were comparatively less effective. Hence pea seeds treated with Neem or Karanj oils provided maximum protection against fungal pathogens.

Keywords: Pea; *Pisum sativum*; vegetable oils; seed mycoflora

INTRODUCTION

Chemicals used in the control of diseases pollute the atmosphere besides affecting the crops. To avoid the hazardous effects of chemicals natural products of some plants and their products have been used to control plant diseases (Rahber-Bhatti 1986, Bowers and Locke 2000, Momin and Nair 2001). Plant extracts may therefore be an alternative to currently used

fungicides for controlling pathogenic fungi as they constitute a rich source of bioactive chemicals (Wink 1993). Unlike insecticides the plant products viz castor oil, Neem oil, sweet flag powder, Karanja oil etc are known to control storage infestation effectively for a longer periods without impairing germination and vigour besides being cost effective, environmentally less toxic and eco-friendly (Pandey et al 1976 and Babu et al 1989). *Aspergillus* and

Fusarium species produce mycotoxins in food besides causing seedling blight, seed rot, kernel rot, stalk rot, wilt and stunt (Blat 1969, Thiel et al 1991, Fandohan et al 2003). Several reports have been made on the fungicidal properties of Neem oil (Singh et al 1980, Kazmi et al 1995). Locke (1995) reported that in field *Alternaria alternata*, *Aspergillus niger* and *Fusarium oxysporum* were completely controlled by using 2-10 per cent Neem oil. The present investigations were undertaken to find out effectiveness of seed treatment of peas with vegetable oils against *Aspergillus* sp, *Fusarium* sp, *Alternaria* sp and *Mucor* sp.

MATERIAL AND METHODS

The present studies on the effect of different vegetable oils against pulse beetle (*Callosobruchus chinensis*) were conducted in the Department of Environmental Science, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan. Pea seeds cv Arkel were heat sterilized at 55°C for 4 h and 100 g sterilized seeds were put in different plastic container (250 cc). The contents of each container were thoroughly mixed and coated with selected doses (5%, 3% and 1%) of six different vegetable oils viz Mustard (*Brassica juncea* (L) Cezern & Coss), Neem (*Azadirachta indica* A Juss), Karanj (*Pongamia glabra* (L) Pierre), cedar wood oil (*Cedrus deodara* Roxb ex Rottl & Willd), apricot (*Prunus armeniaca*

L) and olive (*Olea cuspidata* (L) Wall ex G Don) and control (distilled water). There were seven treatments including control and each treatment was replicated thrice. Laboratory reared insects were released in each jar as per the designed experiment. The seeds damaged by insects were further grown to study per cent germination by using paper towel method as proposed by Sen and Ghosh (1999) and kept in germination chamber at 25±1°C for germination. While conducting the experiment four fungal species were found associated with the germinated seeds in different treatments. The fungal species growing on the germinated seeds were isolated and identified. Fungal structures from pea seeds were put on slide sterilized with cotton rinsed with alcohol (70%) and placed on slide containing one or two drops of lacto phenol/ cotton blue. The fungal structures were observed under the microscope and identified on the basis of mycelium, spore etc (Barnett and Hunter 1972).

RESULTS AND DISCUSSION

Minimum incidence of *Aspergillus* sp (Table 1) was observed in seeds treated with Neem oil (10.67%) which was significantly less than rest of the treatments. Karanj (15.33%), cedar (16.33%), mustard (15.33%), olive (16.22%) and apricot (18.56%) were at par with each other and also resulted in significantly lower disease incidence than control (25.00%).

Table 1. Incidence of *Aspergillus* sp on pea seeds treated with vegetable oils at different concentrations

Treatment	*Mean incidence (%) of <i>Aspergillus</i> sp at indicated concentrations (%)			
	5	3	1	Mean
Mustard	13.67(3.64)	15.67(3.95)	16.67(4.03)	15.33(3.87)
Neem	8.33(2.88)	10.67(3.21)	13.00(3.59)	10.67(3.23)
Karanj	10.67(3.25)	16.67(4.31)	18.67(4.03)	15.33(3.87)
Cedar	15.00(3.99)	16.00(4.21)	18.00(3.86)	16.33(4.02)
Apricot	13.67(3.69)	20.33(4.58)	21.33(4.56)	18.56(4.28)
Olive	12.67(3.49)	14.33(3.78)	21.67(4.64)	16.22(3.97)
Control	28.67(5.35)	21.67(4.62)	24.67(4.95)	25.00(4.97)
Mean	14.62 (3.76)	16.48 (4.09)	19.53(4.24)	16.76(4.03)

*Mean of three replications

Figures in parentheses are square root transformed values

CD_{0.05}

Treatment: (0.47)
Concentration: (0.31)
Treatment x concentration: (0.82)

Minimum incidence of *Alternaria* sp was observed (Table 2) on seeds coated with Neem oil (2.67%) which was statistically at par with Karanj (3.78%), cedar and mustard (4.67% each) and olive (4.11%).

There was no incidence of *Mucor* sp on seeds coated with Neem and mustard oil. These treatments were at par with Karanj (0.67%) and cedar (1.00%) and superior over rest of the treatments. Neem and mustard oils provided complete protection of seeds from *Mucor* sp even at lower concentrations of 1 and 3 per cent each (Table 3).

The incidence of *Fusarium* sp was nil in all tested concentrations of 5, 3 and 1 per cent each of Neem, Karanj and mustard, cedar and olive at 5 and 3 per cent each and apricot at 5 per cent. All the tested vegetable oils showed superiority over control (Table 4).

The results of present investigations corroborate the report of Vir and Sharma (1985) who reported that Neem oil at 10 per cent concentration gave 100 per cent growth inhibition of fungi viz *Fusarium moniliforme*, *Aspergillus niger*, *Drechslera rostrata* and *Macrophomina phaseolina*. Locke (1995) reported that

Table 2. Incidence of *Alternaria* sp on pea seeds treated with vegetable oils at different concentrations

Treatment	*Mean incidence (%) of <i>Alternaria</i> sp at indicated concentrations (%)			
	5	3	1	Mean
Mustard	1.33(1.27)	4.00(2.03)	8.67(3.03)	4.67(2.11)
Neem	0.33(0.88)	3.00(1.86)	4.67(2.21)	2.67(1.65)
Karanj	0.33(0.88)	4.00(1.93)	7.00(2.73)	3.78(1.85)
Cedar	0.33(0.88)	6.33(2.51)	7.33(2.80)	4.67(2.06)
Apricot	4.33(2.18)	4.67(2.06)	6.00(2.53)	5.00(2.26)
Olive	2.33(1.64)	4.67(2.24)	5.33(2.40)	4.11(2.09)
Control	4.67(1.64)	6.67(2.66)	7.00(2.72)	6.11(2.55)
Mean	1.95 (2.26)	4.76(2.17)	6.57(2.63)	4.43(2.08)

*Mean of three replications

Figures in parentheses are $\sqrt{x + 0.5}$ transformed valuesCD_{0.05}

Treatment: (0.51)

Concentration: (0.33)

Treatment x concentration: (0.88)

Table 3. Incidence of *Mucor* sp on pea seeds treated with vegetable oils at different concentrations

Treatment	*Mean incidence (%) of <i>Mucor</i> sp at indicated concentrations (%)			
	5	3	1	Mean
Mustard	0.00(0.71)	0.00(0.71)	0.00 (0.71)	0.00(0.71)
Neem	0.00(0.71)	0.00(0.71)	0.00(0.71)	0.00(0.71)
Karanj	0.00(0.71)	0.67(1.00)	1.33(1.29)	0.67(1.00)
Cedar	0.00(0.71)	1.00(1.17)	2.00(1.56)	1.00(1.15)
Apricot	0.67(1.00)	1.67(1.39)	2.67(1.76)	1.67(1.38)
Olive	0.33(0.88)	1.67(1.46)	1.33(1.34)	1.11(1.23)
Control	0.33(0.88)	2.00(1.47)	3.67(2.02)	2.00(1.46)
Mean	0.19(0.80)	1.00(1.13)	1.57(1.34)	0.92(1.09)

*Mean of three replications

Figures in parentheses are transformed values

CD_{0.05}

Treatment: (0.31)

Concentration: (0.21)

Treatment x concentration: (0.55)

Table 4. Incidence of *Fusarium* sp on pea seeds treated with vegetable oils at different concentrations

Treatment	*Mean incidence (%) of <i>Fusarium</i> sp at indicated concentrations (%)			
	5	3	1	Mean
Mustard	0.00(0.71)	0.00(0.71)	0.00(0.71)	0.00(0.71)
Neem	0.00(0.71)	0.00(0.71)	0.00(0.71)	0.00(0.71)
Karanj	0.00(0.71)	0.00(0.71)	0.00(0.71)	0.00(0.71)
Cedar	0.00(0.71)	0.00(0.71)	1.00(1.09)	0.33(0.84)
Apricot	0.00(0.71)	0.67(0.76)	2.00(1.48)	0.89(0.99)
Olive	0.00(0.71)	0.00(0.71)	0.67(0.96)	0.22(0.79)
Control	3.00 (1.84)	2.67(1.72)	3.00(1.86)	2.89(1.80)
Mean	0.43(0.87)	0.48(0.86)	0.95(1.08)	0.62(0.94)

*Mean of three replications

Figures in parentheses are transformed values

CD_{0.05}

Treatment: (0.31)

Concentration: (0.20)

Treatment x concentration: (0.53)

Alternaria alternata, *Aspergillus niger* and *F oxysporum* were completely controlled by 2-10 per cent Neem oil. Niaz and Kazmi (2005) found Neem oil quite effective against *Aspergillus* species. Sitara et al (2008) have reported antifungal activity of Neem (*Azadirachta indica*) and mustard (*Brassica campestris*) oils against eight fungi viz *Aspergillus niger*, *A flavus*, *Fusarium moniliforme*, *F oxysporum*, *F nivale*, *F semitectum*, *Alternaria alternate* and *Drechslera hawiensis*.

Hence it can be concluded from the present study that treatment of pea seeds with Neem and Karanj oils provided good

protection against fungal pathogens and contaminants.

ACKNOWLEDGEMENTS

The authors are thankful to the Professor and Head, Department of Environmental Science and Department of Plant Pathology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP for providing necessary facilities.

REFERENCES

Babu TR, Sudheer Reddy V and Hussaini SH 1989.
Effect of edible and non-edible oils on the development of the pulse beetle (*Callosobruchus*

chinensis L) and on viability and yield of mungbean, *Vigna radiata* (L) Wilczek. Tropical Science **29(5)**: 215-220.

Barnett HL and Hunter BB 1972. Illustrated genera of imperfect fungi. Burgess Publishing Company, Minneosta, USA, 241p.

Blat G 1969. Aflatoxin. Academic Press, Inc (London), pp 17.

Bowers JH and Locke JC 2000. Effect of botanical extracts on population density of *Fusarium oxysporum* in soil and control of *Fusarium* wilt in the green house. Plant Disease **88**: 300-305.

Fandohan PK, Hell WF, Marasas O and Wingfield MJ 2003. Infection of maize by *Fusarium* species and contamination on with fumonisin in Africa. African Journal of Biotechnology **2(12)**: 570-579.

Kazmi SAR, Shahzad S and Niaz I 1995. Effect of Neem oil on in vitro growth of root infecting fungi. Pakistan Journal of Botany **27(1)**: 217-220.

Locke JE 1995. Fungi. In: The Neem tree *Azadirachta indica* A Juss and other meliaceous plants: Sources of unique national products for integrated pest management, medicine, industry and other proposes. (H Schmutterer ed). VCH Weinheim, Germany, pp 118-125.

Momin RA and Nair MG 2001. Mosquitocidal, nematicidal and antifungal compounds from *Apium graveolens* L seeds. Journal Agricultural and Food Chemistry **49**: 142-145.

Niaz I and Kazmi SAR 2005. Neem seed coat oil fractions on stored grain fungi. International Journal of Biology and Biotechnology **2(3)**: 705-706.

Pandey ND, Singh SR and Tewari GI 1976. Use of some plant powders, oils and extracts as protectants against pulse beetle, *Callosobruchus chinensis* L. Indian Journal of Entomology **38**: 110-113.

Rahber-Bhatti MH 1986. Control of *Phakopsora grewiae* with plant diffusates. Pakistan Journal of Botany **18(2)**: 329-333.

Sen S and Ghosh N 1999. Seed science and technology. Kalyani Publishers, Ludhiana, pp 112-174.

Singh VP, Singh HB and Singh RB 1980. The fungicidal effect of Neem extracts on some soil borne pathogens of gram (*Cicer arietinum*). Mycologia **72**: 1077-1093.

Sitara U, Niaz I, Naseem J and Sultana N 2008. Antifungal effect of essential oils on *in vitro* growth of pathogenic fungi. Pakistan Journal of Botany **40(1)**: 409-414.

Thiel PG, Marasas WFO, Sydenban EW, Shgephard GS, Gelderblom WC and Hievmenhuis JJ 1991. Survey of fumonisin production by *Fusarium* spp. Applied Environmental Microbiology **51**: 1089.

Vir D and Sharma RK 1985. Studies on the fungicidal properties of Neem oil. Indian Journal of Plant Pathology **3(2)**: 241-242.

Wink M 1993. Production and application of Phytochemicals from an agricultural perspective In: *Phytochemistry and Agriculture: Proceedings of the Phytochemicals Society Europe* (Eds. Van Beek, T.A. and Breteler, H.) Clarendon Press: Oxford, U. K., pp.171-213.

Received: 11.3.2013

Accepted: 18.5.2013