

Integrated nutrient management in *Dendrocalamus strictus* (Roxb) Ness for quality seedling production

AFAQ MAJID WANI and B SIVAKUMAR

Allahabad Agricultural Institute, Deemed University, Allahabad 211007 UP

Email for correspondence: afaqtree@gmail.com

ABSTRACT

An experiment was laid out for quality seedling production of *Dendrocalamus strictus* (Roxb) Ness in nursery at three levels of integrated nutrient management (INM) combinations viz N, P_2O_5 and K_2O (2.0, 1.25, 1.25; 1.5, 0.938, 0.938; 1.0, 0.625, 0.625 g kg^{-2} of soil) applied as urea, single super phosphate and muriate of potash along with FYM (500 g) and biofertilizers viz VAM and *Azospirillum* each @ 40, 20 g kg^{-2} of soil respectively and compared with unfertilized control. The results revealed that integration of 1.5 g N, 0.938 g of P_2O_5 and 0.938 g of K_2O kg^{-2} of soil supplemented with FYM (500 g), VAM (40 g) and *Azospirillum* (20 g) significantly enhanced the growth parameters viz shoot length and number of leaves, root length, collar diameter, dry matter, volume index and quality index of *D. strictus* seedlings over control.

Keywords: Bio-fertilizers; VAM; FYM; *Azospirillum*; *Dendrocalamus strictus*

INTRODUCTION

Bamboo is a wonderful gift of nature. Bamboo species are giant, woody tree like grasses, have a long history and are widely used as renewable bioresource. The rage of uses of bamboo for humans is remarkable with an estimated annual use of 12 kg of bamboo produce per capita in Asia (Recht and Wetterwald 1988). Besides some minor uses such as leaves for medical purposes (Zhang 1997), fresh edible shoots and culms for timber or a raw material for pulping are the major products from bamboo. While supplying products of

immediate use for humans bamboo also serves multiple ecological functions such as soil and water conservation and erosion control (Fu and Banik 1995). Due to its great potential for rapid biomass production (Pearson et al 1994) bamboo is a significant net sink of global CO_2 (Jones et al 1992). Although wasteland tracts in south and southern Asia are covered with bamboo and area planted to bamboo is increasing in China by 51,000 ha/year (Li and Xu 1997) there is rising concern about acute scarcity of bamboo products in the future (Hsiung 1988). In India it is projected that at the current level of bamboo productivity for

paper industry and with the growing demand for paper an additional 30-60 million ha of land would be required by 2015 (AdKoli 1991).

The plethora of its uses in the human economy has led to the coinage of a variety of names for this superb species. The Vietnamese call it 'my brother', the Chinese 'Friend of the people' and in India it is widely known as 'Green gold' or 'Poorman's timber'. Bamboo is a tall arborescent grass belonging to the family Bambusae, a tribe of Poaceae (Gramineae) indigenously found in all the continents except Europe. It is reported that over 75 genera and 1250 species of bamboos occur in the world whereas 43 species belonging to 14 genera are found in Africa.

Dendrocalamus strictus is middle sized, densely tufted bamboo often gregarious, sub-deciduous and culms attaining 8-16 m height 2.5-8 cm diameter according to the locality. Young culms are pale blue-green, dull green or yellowish when old, nodes somewhat swollen, basal nodes often rooting, lower nodes often with branches, internodes 30-45 cm long and thick walled. Culms are almost solid in dry areas and hollow with thick walls in moist areas.

MATERIAL AND METHODS

Nursery studies were carried out on production of quality seedling through integrated nutrient management of *D*

strictus. The experiment was laid out in Completely Randomized Design (CRD) as suggested by Snedecor and Cochran (1967) with five treatments and five replications at College of Forestry and Environment, Allahabad Agricultural Institute, Deemed University, Allahabad (25° 87' N latitude, 81° 5' E longitude, 78m above msl, mean annual rainfall of 1100 mm). In the present experiment seed management techniques and INM were taken.

The polythene bags of size 25x20 cm were filled with two kg of soil. The bags were arranged in a CRD with five replications @ 100 polythene bags treatment¹ replication¹. The seeds of *D strictus* were sown in mother bed of size of 10x1 m. Healthy seedlings were transplanted uniformly @ one seedling bag⁻¹ at 30 days after sowing (DAS). The irrigation and plant protection measures were given as per recommendations. The soil mixture was 2:1:1 (soil:sand:FYM) used for poly bags. The calculated quantity of biofertilizers (VAM and *Azospirillum*) were added to the respective poly bags as per the treatment schedule at transplanting. The inorganic fertilizers were added as aqueous solution to each poly bag seven days after transplanting (DAT). The experiment and treatment details are furnished in Table 1. The biometric observations viz shoot length (cm), root length (cm), collar diameter (cm), number of leaves, shoot dry weight (g), root dry weight (g), total dry matter production (g), root/shoot ratio, volume index and

Table 1. INM treatment details

Treatment	Particulars (kg ⁻² soil of pot mixture)
T ₁	Control
T ₂	2 g N, 1.25 g P ₂ O ₅ and 1.25 g K ₂ O alone
T ₃	2 g N, 1.25 g P ₂ O ₅ and 1.25 g K ₂ O+FYM (500 g)+VAM (40 g)+ <i>Azospirillum</i> (20 g)
T ₄	1.5 g N, 0.938 P ₂ O ₅ and 0.938 K ₂ O+FYM (500 g)+VAM (40 g)+ <i>Azospirillum</i> (20 g)
T ₅	1 g N, 0.625 P ₂ O ₅ and 0.625 K ₂ O+FYM (500 g)+VAM (40 g)+ <i>Azospirillum</i>

quality index were recorded at 60, 90 and 120 DAT @ three seedlings/treatment/replication.

RESULTS AND DISCUSSION

Effect of integrated nutrient management (INM) on seedling quality

The shoot length of *D strictus* seedlings significantly varied at all the three stages and the highest shoot length of 65.67 cm was recorded with the application of 1.5 g N, 0.938 g of P₂O₅ and 0.938 g of K₂O kg⁻² of soil along with FYM (500 g), VAM (40 g) and *Azospirillum* (20 g) in T₄ at 120 DAT followed by 54.41 cm with the application of 2 g of N, 1.25 g of P₂O₅ and 1.25 g of K₂O kg⁻² soil supplemented with FYM (500 g), VAM (40 g) and *Azospirillum* (20 g) in T₃ (Table 2). The lowest shoot length of 28.83 cm was observed in control at 120 DAT. All the treatments followed the same trend at 60 and 90 DAT and the different levels of treatments registered a significant effect on root length of *D strictus*. T₄ was rated to be the best as it recorded the highest root

length of 29.55, 51.33 and 64.61 cm at 60, 90 and 120 DAT respectively. The lowest root length of 32.25 cm was observed in control at 120 DAT. Collar diameter exhibited a significant variation among the stages and treatments. T₄ also recorded the highest collar diameter of 2.97 cm followed by T₅ with the value of 2.08 cm. The lowest collar diameter of 0.84 cm was observed in control at 60 DAT. The number of leaves ranged from 13.3 to 29.11, 17.3 to 36.1 and 24.7 to 45.1 at 60, 90 and 120 DAT respectively. T₄ ranked first at 60, 90 and 120 DAT recording 29.1, 36.1 and 45.1 number of leaves respectively. Control recorded the lowest number of leaves at all the stages with 13.3, 17.3 and 24.7 number of leaves at 60, 90 and 120 DAT (Table 3).

Effect of INM on dry matter production at various stages of seedling growth

Shoot dry weight in all the treatments had a profound influence in enhancing the shoot dry matter while control recorded the least value of 0.977, 1.472 and 1.939 g seedling⁻¹ respectively at 60,

Table 2. Effect of INM on shoot length (cm) and root length (cm) of *D strictus* seedlings

Treatment	Shoot length (cm)			Root length (cm)		
	60 DAT	90 DAT	120 DAT	60 DAT	90 DAT	120 DAT
T ₁	16.15	21.66	28.83	19.41	25.47	32.25
T ₂	19.45	26.13	37.07	22.77	33.53	36.01
T ₃	20.72	28.81	54.41	26.37	40.69	53.25
T ₄	25.81	31.73	65.67	29.55	51.33	64.61
T ₅	18.93	28.23	45.73	13.25	36.65	46.15
SEd	0.68	0.71	0.65	0.82	1.26	1.24
CD _{0.05}	1.41	1.53	1.33	1.71	2.63	2.58

Table 3. Effect of INM treatments on collar diameter (cm) and number of leaves of *D strictus* seedlings

Treatment	Collar diameter (cm)			Number of leaves		
	60 DAT	90 DAT	120 DAT	60 DAT	90 DAT	120 DAT
T ₁	0.84	1.05	1.21	13.3	17.3	24.7
T ₂	1.16	1.46	1.93	18.1	27.3	32.1
T ₃	1.55	1.81	2.21	24.3	28.5	36.7
T ₄	2.06	2.26	2.97	29.1	36.1	45.1
T ₅	1.39	1.61	2.08	20.3	23.9	33.5
SEd	0.04	0.05	0.06	1.08	1.05	1.17
CD _{0.05}	0.09	0.09	0.12	2.27	2.16	2.36

90 and 120 DAT all other treatments proving to be better than control. The shoot dry matter was higher with the application of T₄ recording 3.165, 3.917 and 4.660 g seedling⁻¹ respectively at 60, 90 and 120 DAT (Table 4). For root dry weight among the treatments the performance of T₄ was the best at all the stages by recording the highest root dry matter value of 2.731,

3.286 and 3.955 g seedling⁻¹ for 60, 90 and 120 DAT respectively and T₃ with the value of 3.352 g seedling⁻¹ at 120 DAT. The control recorded the lowest root dry matter of 1.866 g seedling⁻¹ at 120 DAT (Table 4).

There was a significant difference in total dry matter production of *D strictus*

seedlings as affected by the treatments at all stages of observation. T_4 recorded higher value of 8.617 g seedling $^{-1}$ at 120 DAT which was followed by T_3 recording 7.132 g seedling $^{-1}$ g. The control remained to be inferior to all other treatments by recording 1.927, 2.884 and 3.807 g seedling $^{-1}$ at 60, 90 and 120 DAT respectively. The individual application of inorganic fertilizers proved its superiority over control but could

not stand before any of the integrated nutrient management treatments (Table 4).

Effect of INM on quality parameters at various stages of seedling growth

The root/shoot ratio was significantly influenced by the treatments at all the stages. T_4 recorded significantly higher value of 1.983 at 120 DAT which was on par with T_3 which recorded 1.978 at 120 DAT (Table 5). The volume index of *D strictus* seedlings significantly varied

Table 4. Effect of INM treatments on root dry weight, shoot dry weight and total dry matter of *D strictus* seedlings

Treatment	Shoot dry weight (g seedling $^{-1}$)			Root dry weight (g seedling $^{-1}$)			Total dry weight (g seedling $^{-1}$)		
	60	90	120	60	90	120	60	90	120
	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT
T_1	0.977	1.472	1.939	0.950	1.412	1.866	1.972	2.884	3.807
T_2	2.131	2.755	2.961	1.990	2.613	2.695	4.122	5.368	5.658
T_3	2.724	3.169	3.777	2.439	2.833	3.352	5.164	5.002	7.132
T_4	3.165	3.917	4.660	2.731	3.286	3.955	5.879	7.203	8.617
T_5	2.305	2.985	3.380	2.121	2.832	3.060	4.428	5.819	6.442
SEd	0.072	0.077	0.081	0.084	0.071	0.112	0.151	0.141	0.181
CD _{0.05}	0.150	0.160	0.170	0.176	0.148	0.234	0.315	0.295	0.397

at all the three stages and the highest volume index of 1950 was recorded with the application of T_4 at 120 DAT. This was closely followed by T_3 which recorded the volume index value of 1202 at 120 DAT. Control remained poorer in all the treatments at all the three stages with

volume index of 136, 227 and 336 at 60, 90 and 120 DAT respectively (Table 5). Quality index supplementation of T_4 favorably influenced the quality index than other treatments at all stages by recording quality index of 2.543 at 120 DAT. T_3 was rated next best with quality index of 2.987.

Table 5. Effect of INM treatments on root/shoot ratio, volume index and quality index of *D. strictus* seedlings

Treatment	Root:shoot ratio			Volume index			Quality index		
	60	90	120	60	90	120	60	90	120
	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT
T ₁	1.202	1.176	1.119	136	227	336	0.653	0.929	1.113
T ₂	1.171	1.283	1.971	224	381	715	1.500	1.888	1.874
T ₃	1.273	1.412	1.978	319	521	1202	2.104	2.214	2.987
T ₄	1.145	1.618	1.983	529	717	1950	2.446	3.775	2.543
T ₅	1.700	1.298	1.009	261	455	951	1.808	2.073	2.950
SED	0.023	0.017	0.026	14.9	26.4	47.1	0.089	0.054	0.071
CD _{0.05}	0.047	0.036	0.055	31.0	55.1	98.2	0.186	0.113	0.148

The control registered the lowest quality index at all the three stages (Table 5).

CONCLUSION

Considering the above findings, T₄ (1.5 g N, 0.938 P₂O₅ and 0.938 K₂O+FYM (500 g)+VAM (40 g)+*Azospirillum* (20 g) has given maximum growth and biomass production and uptake of nutrients under nursery condition.

REFERENCES

Adkoli NS 1991. Bamboo in the Indian pulp industry. In: Proceedings of the 4th International Bamboo Workshop on Bamboo in Asia and the Pacific, Chiangmai, Thailand. 27-30 Nov 1991. Forest Research Support Programme for Asia and the Pacific, Bangkok, Thailand.

Fu MY and Banik RL 1995. Bamboo production systems and their management. In: Bamboo, people and the environment. Proceedings of the V International Bamboo Congress, Ubud, Bali, Indonesia, 19-22 June 1995, Vol I. Propagation and management International Network for bamboo and Rattan, New Delhi, India, pp 18-33.

Huiung WY. 1988. Prospects for bamboo development in the world. Journal of American Bamboo Society 8: 168-178.

Jones MB, Long SP and Roberts MJ 1992. Synthesis and conclusions. In: Primary productivity of grass ecosystems of the tropical and sub-tropics. Chapman and Hall, London, UK, pp 212-225.

Li SD and Xu CD 1997. The history of Chinese bamboo industry and the challenge for development in 21st century. In: Bamboo towards 21st century, 7-11 Sept 1997, Research Institute of Sub-tropical Forestry, Chinese Academy of Forestry, Anji, PR Zhejiang, China 4p.

Pearson AK, Pearson OP and Gomez IA 1994. Biology of Bamboo *Chusquea culeou* (Poaceae: Bambusoideae) in Southern Argentina III, pp 93-126.

INM in *D. strictus*

Recht C and Wetterwald MR 1988. Bamboos. In: Verlag Eugenutmer (GW Snedecor and WG Cochran Eds), Statistical methods, 6th Ed, Oxford and IBH Publishing Co, Ets Press, Kolkota.

Snedecor GW and Cochran WG 1967. Statistical methods. 6th Ed, Oxford and IBH Publishing Co, Ets Press, Kolkota.

Zhang Y 1997. Bio-antioxidative activity of functional factors in bamboo leaf. In: Paper summaries, International bamboo towards 21st Century, 7-11 September 199 (MY Fu and YP Lou Eds), Research institute of Sub-tropical Forestry, Chinese Academy of Forestry, Anji Zhejilang PR, China.

Received : 19.4.2012

Accepted : 27.8.2012