Short Communication

Impact of Krishi Vigyan Kendra trainings on awareness and adoption of improved technologies

RAVNEET KOUR

Krishi Vigyan Kendra SKUAST-J, Doda 182221 J&K, India

Email for correspondence: kourravneet24@yahoo.com

ABSTRACT

The study was conducted in different villages of two blocks of district Doda viz Bhadarwah and Assar. A total of 60 trained and 60 untrained farmers were selected as a sample for the study. The data indicated that 70 per cent of trained farmers had high knowledge level whereas a large majority of untrained farmers (73%) had medium level of knowledge regarding production technology of horticultural crops. It indicated that a large number of trained farmers (72%) had high level of adoption whereas 68 per cent of untrained farmers had medium level of adoption regarding the technologies. It is concluded that trainings could be an effective method to improve the knowledge and awareness among the farmers about the latest technologies.

Keywords: KVK; training; adoption; knowledge; horticultural crops

INTRODUCTION

Training has been acclaimed as powerful tool in developing scientific attitude, skill and willingness required for creating the awareness of latest technology among the farmers. In this the Krishi Vigyan Kendras which are the grassroot level centres committed to vocational trainings, trainings on relevant technologies and their transfer play an important role. The Krishi Vigyan Kendra, Doda, Jammu and Kashmir established as such centre is catering to the needs of three districts of Ramban, Doda and Kishtwar of the state. The present investigation was carried out in the district

of Doda to study the knowledge and adoption level of farmers of improved production technologies of horticultural crops after obtaining the trainings regarding the same.

METHODOLOGY

The study was conducted in different villages of two blocks of district Doda viz Bhadarwah and Assar. The villages having farmers who had received the trainings were purposively selected. A total of 60 trained and 60 untrained farmers were selected as a sample for the study. A pre-tested interview schedule was

prepared and data were collected through personal contact.

RESULTS and DISCUSSION

The distribution of trained and untrained farmers according to their knowledge level is depicted in Table 1. The data indicated that 70 per cent of trained farmers had high knowledge level whereas a large majority of untrained farmers (73%) had medium level of knowledge regarding production technology of horticultural crops. This might be due to the fact that after imparting trainings by extension specialists there was enhancement in the knowledge level of the farmers. The results

are in conformity with those of Patel et al (2012).

Extent of adoption level by trained and untrained farmers of improved production technologies of horticultural crops

The distribution of respondents according to adoption level is depicted in Table 2. It indicated that a large number of trained farmers (72%) had high level of adoption whereas 68 per cent of untrained farmers had medium level of adoption regarding the technologies. This again shows that the adoption level of farmers increased due to the trainings they took. The study is supported by the findings of Singh et al (2011) and Vyas et al (2012).

Table 1. Distribution of respondents according to their knowledge level of improved production technologies of horticultural crops

Knowledge level (score)	Trained farmers (n= 60)		Untrained farmers (n= 60)	
	Frequency	Percentage	Frequency	Percentage
Low (0 to 33)	6	10	9	15
Medium (34 to 66)	12	20	44	73
High (67 to 100)	42	70	7	12

Table 2. Distribution of respondents according to their adoption level of fruit production technology

Adoption level (score)	Trained farmers (n= 60)		Untrained farmers (n= 60)	
	Frequency	Percentage	Frequency	Percentage
Low (0 to 33)	6	10	12	20
Medium (34 to 66)	11	18	41	68
High (67 to 100)	43	72	7	12

Thus it could be inferred from the data that training programmes play an important role in increasing the rate of adoption of improved horticultural production technologies among the farmers. The trained farmers had high level of knowledge and adoption as compared to the untrained farmers. Therefore trainings could be an effective method to improve the knowledge and awareness among the farmers about the latest technologies.

REFERENCES

- Patel AR, Kapur LT and Thakor RF 2012. Impact of Krishi Vigyan Kendra trainings on knowledge and adoption of tribal farmers. Agriculture Update **7(3-4)**: 430-432.
- Singh G, Singh CS, Khare NK and Pathak R 2011. Impact assessment of training on upgradation of knowledge and skill of rural women. Indian Journal of Agricultural Research and Extension **4:** 52-55.
- Vyas L, Vyas R and Indoria D 2012. Effectiveness of trainings for farm women of Udaipur district regarding vermiculture technology. Agriculture Update **7(3-4):** 417-419.

Received: 29.7.2015 Accepted: 26.11.2015