Stability analysis of potato cultivars for Kharif cultivation in Koraput region of Odisha

JYOTSHNARANI MAHARANA, CM PANDA*, AK DASH*, PC SATPATHY* and PRAVEEN JAKHAR**

Krishi Vigyan Kendra, Semiliguda, Koraput 763002 Odisha, India *Department of Vegetable Science, Orissa University of Agriculture and Technology Bhubaneswar 751003 Odisha, India

**ICAR-IISWC, Research Centre, Sunabeda, Koraput 763002 Odisha, India Email for Correspondence: jrm_kvk@yahoo.com

ABSTRACT

Stability analysis helps in understanding the adaptability of genotypes over different environmental conditions and identification of adaptable genotypes. The objective of the present study was to determine stable potato genotypes for off-season potato cultivation in Koraput region of southern Odisha. Sixteen varieties were evaluated for ten characters during Kharif season of 2014 and 2015 for stability parameters. Kufri Pukhraj, Kufri Lalit and Kufri Jyoti with mean tuber weight of 28.94, 28.96 and 29.67 g respectively showed stability in average tuber weight over all the locations. The mean values of tubers/plant indicated that Kufri Ashok variety was highest (7.81) while Kufri Arun was lowest yielding genotype (4.93). Highest mean value for tuber yield was recorded for variety Kufri Lalima (133.2) while Kufri Arun (84.2) had least mean value. The set of genotypes viz Kufri Lalima, Kufri Pukhraj, Kufri Lalit, Kufri Jyoti, Kufri Ashok and Kufri Chipsona 3 were found to be widely adapted to all the locations. For marketable yield Kufri Pukhraj and Kufri Jyoti had highest mean value of 107.4 and 107.3 respectively. Of the 16 varieties evaluated for 10 characters, Kufri Lalit, Kufri Lalima, Kufri Pukhraj and Kufri Jyoti were found to be stable for 8, 7, 8 and 7 characters respectively. These varieties can be recommended to farmers for cultivation for off-season (Kharif) potato cultivation in Koraput region. Kufri Chipsona 1 and Kufri Surya were adapted to favourable environment only due to their specific characteristics.

Keywords: Stability; potato; off-season; genotype-environment interaction

INTRODUCTION

In India potato (*Solanum tubersom* L) is grown in an area of 2.02 million hectares with a production of 46.3 MT and productivity of 22.7 tons/ha (Anon 2014a). The leading states in potato

production are Uttar Pradesh, West Bengal, Bihar, Odisha and Madhya Pradesh. In Odisha potato is cultivated in an area of 14990 ha with a production of 249 MT mostly concentrated in Rabi season. In Koraput district of Odisha potato is grown in an area of 1000 ha with a production of 850 tons. The productivity of this crop is far below (8.5 tons/ha) the national average (22.5 tons/ha) (Anon 2014b). Koraput region of Odisha comes under eastern Ghat high land zone of India receiving an average annual rainfall of 1450 mm. During southwest monsoon a larger chunk of medium sloping lands remains fallow despite having good potential to support vegetable production even under heavy rainfall otherwise leading to water erosion-based soil-nutrient losses (Dass et al 2008).

Under irrigated conditions, potato raised in Koraput region is normally planted in second week of November and harvested from mid-February to March. Potato growers often face the problem of glut and lower market price mainly due to bulk arrival of potatoes from other states during this peak period. To avoid this situation some farmers are growing an early crop of potato (Kharif season) and sell it before normal harvesting season which fetches them premium prices. The agroclimatic conditions of Koraput are suitable for Kharif potato cultivation. Rise in prices of potato has propelled farmers to increase its area under cultivation during Kharif season. The limitation of suitable variety for Kharif season has made farmers to probe for good high yielding varieties of potato during off-season.

Although a number of varieties have been recommended for the cultivation of

potato in Rabi season, the information on the stable varieties for the off-season (Kharif) is lacking. Phenotypically stable genotypes are of great importance because the environmental conditions vary from year to year and region to region. Wide adaptation to the particular environment and consistent performance of recommended genotypes is one of the main objectives in breeding programme. Tuber yield in potato is influenced by genotype and environment interaction. The information on the stable potato varieties, hybrids and exotic germplasm is lacking for exploitation under eastern Ghat highland zone (Koraput region). Therefore an experiment was conducted considering necessity to evaluate and screen the potential varieties of potato giving consistent performance over different locations of the region and to select the genotypes on the basis of stability parameters for important yield and yield attributing traits.

MATERIAL and METHODS

Location of site: Southern Odisha comprises amalgamation of hills with an altitude of 950 m in Koraput region. Climate of the study area is sub-tropical and sub-humid type with mean annual maximum and minimum temperature of 30.6 and 17.0°C respectively. Mean annual rainfall of the area is 1450 mm of which 80 per cent is received during June to October. The 16 genotypes used in the study included released varieties/hybrids of potato, *Solanum tuberosum* sub

sp *tuberosum*. These were evaluated under four environments (Table 2) for two years (2014 and 2015) during Kharif season. The locations were diverse in climate and altitude having scope of off-season potato cultivation.

Genetic material: Varieties for the study were obtained from the AICRP on Potato Centre, Orissa University of Agriculture and Technology, Odisha, Bhubaneswar. Each trial was laid out in a randomized complete block design with three replications. Each genotype in a replication was planted in a row spaced at 20 cm within rows and 60 cm between rows. Fertilization, weeding, other cultural practices and need-based plant protection measures were followed as recommended for Kharif season cultivation.

Data analysis: Data were recorded on shoots/plant, plant height (cm) 30 and 60 days after planting (DAP), leaflets, leaf area (cm²), tuber number/plant, average tuber weight (g), tuber dry matter (%), total tuber yield (q/ha) and marketable tuber yield (>20 g tuber, q/ha). Tuber dry matter was estimated by oven drying 100 g of chopped tubers to a constant weight at 105°C from composite samples drawn immediately after harvest. Pooled stability analysis was done by following Eberhart and Russell (1966). They discussed stability of genotypes in terms of 3 parameters namely genotypic mean (gi), regression coefficient (bi) and deviation from the regression (S²di).

According to this model an ideal or most stable genotype is the one having high mean performance, unit regression and no deviation from regression.

RESULTS and DISCUSSION

Variance analysis: Pooled ANOVA for stability of the quantitative traits at 4 locations is mentioned in Table 1. The analysis of variance revealed that mean sum of squares (MSS) due to genotypes (G) and environments (E) was highly significant for all the characters under study. This indicates the presence of substantial variation among the genotypes over environments. MSS due to Gx Einteraction was recorded significant for all characters except for plant height at 30 and 60 DAP, total leaflets/plant and tubers/plant. Significant G x E interaction indicated that genotypes under different environments behaved differently for the expression of characters of interest. It means that a particular genotype may not exhibit the same phenotypic performance under different environments and may respond differently to a specific environment for a character.

The MSS due to environment (linear) was significant for all the characters indicating that environmental effects are additive. The linear component of G x E interaction was also significant for all the characters under study except plant height at 30 and 60 DAP, total leaflets/plant and tubers/plant indicating significant rate of

Table 1. Pooled analysis of variance for different characters (2014 and 2015)

Parameter	df					Mean	Mean square				
		Shoots/ plant	Plant height (cm) at 30 DAP	Plant height (cm) at 60 DAP	Total leaflets/ plant	Leaf area (cm²)	Tubers/ plant	Tuber dry matter (%)	Average tuber weight (g)	Total tuber yield (q/ha)	Marketable yield (q/ha)
Genotype	15	0.83**	10.10**	12.78*	3365**	1366**	5.64**	10.07**	22.83**	716.2**	552**
Environment	ϵ	0.72**	124.0**	39.65**	2684**	378**	1.01**	17.48**	103.0**	380.0**	321**
Genotype × environment	45	2.63**	2.63	2.83	82	18.6*	0.041	0.72*	2.74**	19.6*	13.2*
Environment (linear)		2.17**	372**	118.96**	**050	1135**	3.05**	52.44**	309**	1140**	963.8**
Environment x genotype (linear)	15	0.027**	2.00	3.43	94.7	32.07**	0.064	0.73*	6.28**	36.6**	18.94**
Pooled error	120	0.009	3.18	3.49	119.5	10.76	0.040	0.41	0.48	10.82	7.96
Pooled deviation	32	0.020**	2.76	2.34	74.9	11.11	0.03	*20.0	0.91**	10.47	9.70

*, **Significant at 5% and 1% probability level respectively, DAP= Days after planting, df = Degree of freedom

Table 2. Environmental indices of different characters in potato varieties over different locations

Character		Loca	ntion	
	Nandapur	Semiliguda	KVK farm	Jeypore
Shoots/plant	0.242	0.027	0.008	-0.277
Plant height (cm) at 30 DAP	3.207	0.934	-0.743	-3.397
Plant height (cm) at 60 DAP	1.258	0.695	0.393	-2.346
Total leaflets/plant	15.97	-1.581	1.232	-15.62
Leaf area (cm ²)	4.074	2.193	0.733	-7.000
Tubers/plant	0.220	0.095	0.047	-0.362
Tuber dry matter (%)	0.857	0.242	0.420	-1.519
Average tuber weight (g)	2.692	0.642	0.078	-3.413
Total tuber yield (q/ha)	3.626	2.923	0.476	-7.025
Marketable yield (q/ha)	3.145	2.639	0.759	-6.543

linear response of the genotypes to environmental changes for these characters. The pooled deviation remained non-significant for most of the characters except shoots/plant, tuber dry matter and average tuber weight. This indicates that linear component of G x E interaction was predominant. Similar results are reported by Patel et al (2008) and Mane et al (2010). Environmental indices of all the locations are presented in Table 2 which indicate the performance of different environments. Environmental indices indict that for most of the characters Nandapur location was the best environment and Jeypore was least suited environment for off-season (Kharif) potato cultivation in Koraput region of Odisha.

Shoots per plant: Total number of shoots per plant varied significantly among different varieties with variety Kufri Lalima registering

maximum mean value of 3.18 shoots per plant while least value of 1.94 was observed in Kufri Arun (Table 3). The mean value over the environments (locations) was 2.62. Nandapur location registered the maximum value of environment indices (0.242) while the least value was in Jeypore condition (-0.277). Only four genotypes viz Kufri Lalit, Kufri Jyoti, Kufri Chipsona 3 and Kufri Pushkar showed stability over the 4 locations with non-significant deviation from regression. Remaining all genotypes had low mean values and were poorly adapted to all locations. The results agree with the work of Joseph et al (2005).

Plant height: The locations varied with regard to plant height at 30 as well as 60 DAP. This is visible with varied value of environmental indices (Table 2). However Nandapur location registered maximum values of 3.20 and 1.25 while Jeypore location gave values -3.39 and -2.35 for

Table 3. Stability parameters for different characters in Kharif potato (pooled data of 2014 and 2015)

Genotypes		Shoots/plant	ut	Plan	Plant height (cm) 30 DAP	m)	Plar	Plant height (cm) 60 DAP	(cm)	Total	Total leaflets/plant	ant	Leaf	Leaf area (cm²)	
	Mean	bi	S^2 di	Mean	bi	S^2 di	Mean	bi	S^2 di	Mean	bi	S^2 di	Mean	bi	S^2 di
Kufri Kanchan	2.15	1.42**	0.008	28.7	1.25**	-1.67	40.4	1.76*	-2.49	116	1.22**	-49	<i>L</i> 9	1.03**	
Kufri Pukhraj	3.17	0.64**	0.001	30.4	1.00**	0.15	41.6	1.13*	-0.21	141	0.48*	-80	108	0.62	0.04
Kufri Chipsona 3	3.01	0.34	0.013	34.0	89.0	2.53	44.5	0.59	-2.18	233	1.10**	-113	104	0.57**	
Kufri Badshah	2.42	1.44**	0.011	29.9	0.99**	-2.44	39.3	0.43	-2.48	122	1.11**	-82	70	0.65	
Kufri Arun	1.94	0.96**	0.005	29.7	1.13**	-3.14	39.4	1.28*	-3.07	139	1.84**	-38	65	1.28**	
Kufri Ashok	2.91	0.93**	0.004	29.0	1.09**	-3.08	40.8	80.0	1.53	143	1.45**	28	103	0.47	
Kufri Chipsona 1	2.06	0.95*	0.028*	32.3	0.28	1.75	43.3	0.77	-1.17	173	1.26**	96-	66	98.0	
Kufri Puskar	2.70	1.48	0.022*	29.1	0.72**	-3.13	39.8	1.31*	0.73	125	0.72**	-105	69	0.74**	
Atlantic	1.97	1.15**	0.014	28.7	1.00**	-1.70	39.2	1.65*	-3.21	115	0.48	10	63	0.72**	
Kufri Lalit	3.06	0.52	0.013	31.5	0.79	4.38	39.8	0.47	5.82	143	*62.0	-27	1111	0.00	
Kufri Bahar	2.38	1.67**	0.001	28.3	0.95	1.46	37.0	2.63*	-2.03	114	0.63*	-61	89	1.35**	
Kufri Lalima	3.18	0.59	-0.001	31.5	1.05**	-2.79	42.1	1.02**	-1.40	152	0.44*	-87	109	0.43	
Kufri Khyati	3.09	1.05**	-0.001	29.3	1.29**	-2.22	41.4	0.78	-1.28	143	0.73	51	101	1.47**	
Kufri	2.36	1.53**	0.049	31.9	1.53**	0.65	39.8	0.32	1.67	130	1.73**	4	06	2.03**	
chandramukhi															
Kufri Surya	2.49	1.13**	0.005	30.0	1.32**	-2.81	40.2	1.59*	-2.31	126	1.15**	-56	68	2.75**	0.29
Kufri Jyoti	3.09	0.20	0.004	31.2	0.92	5.32	39.7	0.18	-3.17	148	0.85*	4	104	1.04**	5.16
Population mean	2.62			30.3			40.5			141			68		

*, **Significant at 5% and 1% probability level respectively, bi= Regression coefficient, S²di= Deviation from regression

30 and 60 DAP respectively. Among the tested varieties only 4 varieties at 30 DAP and 5 varieties at 60 DAP fulfilled the stability criteria at varying degree of probability levels. Processing variety Kufri Chipsona 3 registered maximum plant height values followed by Kufri Chipsona 1 at both the stages of crop growth. Apart from the processing varieties Kufri Pukhraj, Kufri Lalit and Kufri Ashok gave non-significant deviations and regression exhibiting their stability but Kufri Khyati gave regression values approaching unity.

Leaflets per plant: Maximum number of leaflets were exhibited by the plants grown at Nandapur location with environmental index 15.97 while Jeypore location recorded lowest environmental index (-15.62). Kufri Chipsona 3 and Kufri Bahar registered maximum and minimum values to the tune of 233 and 114 respectively. Kufri Chipsona 3 being a medium duration crop exhibited more photosynthetic efficiency with more number of leaflets. But rainfall cessation during October was a constraint for yield during off-season. Mean value for this trait over the environments was 141 which was attained with non-significant deviation and regression by five varieties only. The set of genotypes viz Kufri Lalima, Kufri Pukhraj, Kufri Lalit and Kufri Jyoti attained stability on 5 per cent while Kufri Khyati at 1 per cent probability level. Similar findings for the tested varieties are reported by Vedula (2015).

Leaf area: The varieties Kufri Lalima. Kufri Pukhraj and Kufri Lalit showed wider adaptability to all the four locations by registering non-significant values both in deviation as well as regression remained unaffected by harsh off-season environment. Kufri Lalit registered maximum leaf area value of 111 while minimum value of 63 was observed in exotic variety Atlantic. Nandapur location recorded maximum value of environment index of 4.07 while Jeypore location exhibited minimum value (-7.0). However Kufri Badshah showed stability parameters with low genotypic mean and is suited to unfavourable environment. Remaining varieties exhibited instability over all the locations as it showed significant deviation from regression.

Tubers per plant: The mean values for number of tubers/plant indicated that Kufri Ashok variety was highest yielder (7.81), while Kufri Arun was lowest yielding genotype (4.93) (Table 4). Mean value for this trait over all the environments was 6.42 per plant. As indicated by the environment index (Table 2) Nandapur location showed highest environment indices values for tubers/plant (0.22) while Jeypore location showed minimum values of environmental index (-0.36). Six varieties registered higher tubers/plant over mean value (6.42) while ten varieties deviated significantly. The genotypes Kufri Lalima, Kufri Pukhraj, Kufri Lalit, Kufri Jyoti, Kufri Ashok and Kufri Chipsona 3 showed wider

adaptability to all the 4 locations as indicated by stability criteria. Remaining genotypes with low mean values and significant deviation were unstable over the locations. Varied response of potato genotypes to different environments in case of tubers per plant was also observed by Sharma et al (2003) and Luthra et al (2005).

Tuber dry matter: Tuber dry matter percentage significantly varied between normal and processing varieties. Processing variety Kufri Chipsona 3 registered maximum value of 20.8 per cent followed by Kufri Chipsona 1(20.3%) while least value of 14.96 per cent was observed in Kufri Arun. The mean values over the environments (locations) was 17.18. For this character too Nandapur location registered the maximum value of environment indices (0.85) while the least value was in Jeypore conditions (-1.52). Other than the processing varieties Kufri Lalima, Kufri Lalit, Kufri Khyati and Kufri Ashok showed better adaptability to all the 4 locations for dry matter as indicated by stability parameters. Kufri Pukhraj which showed stability for other parameters recorded lower genotypic mean (16.4%). Remaining genotypes also had low mean values hence were poorly adapted to all locations. Results confirms the findings of Pandey et al (2005).

Average tuber weight: Kufri Pukhraj, Kufri Lalit and Kufri Jyoti with mean tuber weight of 28.94, 28.96 and 29.67 g

showed stability in average tuber weight over all the locations. Kufri Pukhraj being an early variety showed early bulking. While Kufri Bahar with mean tuber weight of 22.13 g recorded minimum values. The average tuber weight over the environments was 25.44 g. Nandapur location recorded maximum value of environment index with values 2.69 while Jeypore location exhibited minimum value (-3.41). Along with above mentioned varieties Kufri Lalima and Kufri Ashok showed better adaptability to all the locations as indicated by stability parameters. Remaining varieties exhibited instability over all the locations as these showed significant deviation from regression. Similar findings are reported for potato stability evaluation by Haydar et al (2009), Davoud and Azimi (2010).

Tuber yield: Highest total tuber yield was exhibited by the plants grown at Nandapur location with environmental index 3.62 while Jeypore location recorded lowest environmental index (-7.02) and had less tuber yield (Table 2). Highest mean value for tuber yield was recorded for variety Kufri Lalima (133.2) while Kufri Arun (84.2) had least mean value. Mean value for this trait over all the environments was 113.3. Seven varieties were linearly predictable in terms of tuber yield because of non-significant deviation as well as regression coefficient out of which six genotypes were found stable across the four locations and Kufri Chipsona1 was unstable due to low mean. The set of genotypes viz

Table 4. Stability parameters for different characters in Kharif potato (pooled data of 2014 and 2015)

Genotypes	T	Tubers/plant	,	Tuber	Tuber dry matter (%)	i.	Averag	Average tuber weight (g)	eight.	Tota	Total tuber yield (q/ha)	eld	Marke	Marketable yield (q/ha)	ple
	Mean	bi	S^2 di	Mean	bi	S^2 di	Mean	bi	S²di	Mean	bi	S²di	Mean	bi	S²di
Kufri Kanchan	5.11	1.10**	-0.016	16.18	1.27**	0.09	24.25	1.09**	0.63	107.5	1.40**	-1.18	86.4	1.19*	18.40
Kufri Pukhraj	7.66	0.43	-0.020	16.46	1.05	0.61	28.94	0.41	1.06*	127.8	0.51	2.56	107.4	0.31	8.96
Kufri Chipsona 3	7.61	0.36	0.048	20.79	0.23	0.01	24.56	0.73**	-0.29	120.0	0.63	-2.91	102.6	0.77*	1.38
Kufri Badshah	5.49	0.73**	-0.029	15.97	1.07**	-0.07	25.72	1.81**	0.25	100.5	0.47	-9.16	8.62	0.95**	-6.57
Kufri Arun	4.93	2.22**	0.014	14.96	0.96**	0.15	22.94	1.41**	-0.28	84.2	1.75**	8.05	69.2	0.85 **	-7.85
Kufri Ashok	7.81	0.22	-0.032	17.53	0.67	0.12	26.53	0.35	1.03*	121.5	0.41	-6.04	105.4	0.92**	-5.50
Kufri Chipsona 1	5.73	1.74**	-0.034	20.31	68.0	0.55	22.41	0.98	-0.36	102.8	1.25	39.49	87.3	1.46**	-4.67
Kufri Puskar	6.43	1.32**	-0.035	16.01	1.25**	0.57	24.65	1.64**	69.0	109.3	1.77**	7.36	95.2	2.65**	14.72
Atlantic	5.15	1.74**	-0.024	16.20	1.31**	0.21	23.41	1.10**	-0.43	106.7	2.90**	-7.55	85.7	1.60**	-5.68
Kufri Lalima	7.75	*4.0	-0.011	18.04	0.52	0.18	27.48	0.40	1.53*	133.2	0.23	-8.62	104.1	0.49	3.11
Kufri Bahar	4.95	0.91**	-0.015	16.01	0.72**	-0.22	22.13	1.28**	1.41*	106.8	1.29**	0.07	87.3	0.97	20.84
Kufri Lalit	7.63	*0.70	-0.013	17.64	0.75**	-0.32	28.96	0.28*	-0.08	127.3	0.17	-9.74	104.2	0.43	-1.63
Kufri Khyati	7.56	0.78	-0.038	17.62	0.71	86*	26.08	0.56**	0.37	126.3	0.58**	-9.23	102.5	*19.0	1.04
Kufri	5.37	1.38**	-0.001	18.09	2.34**	1.75**	25.87	2.03**	-0.27	102.9	0.80**	-5.66	81.9	0.77	-6.94
Chandramukhi															
Kufri Surya	5.94	1.39**	-0.006	16.08	1.33**	-0.19	23.50	1.49**	0.23	107.6	1.16**	-10.26	86.4	1.17**	-7.22
Kufri Jyoti	7.58	0.35	0.018	17.01	0.94**	-0.15	29.67	0.43	1.28*	127.5	89.0	7.21	107.3	*62.0	5.51
Population mean	6.42			17.18			25.44			113.3			93.3		

*, **Significant at 5% and 1% probability level respectively, bi= Regression coefficient, S'di= Deviation from regression

Kufri Lalima, Kufri Pukhraj, Kufri Lalit, Kufri Jyoti, Kufri Ashok and Kufri Chipsona 3 were found to be widely adapted to all the locations. Exotic variety Atlantic was unstable over the environments as this genotype showed significant deviation from regression. Luthra et al (2009) also reported high mean value for tuber yield in Kufri Pukhraj for early season while Kaushik et al (2006) reported similar findings in multilocation potato trials.

Marketable yield: Kufri Pukhraj and Kufri Jyoti had highest mean value of 107.4 and 107.3 respectively while Kufri Arun had least mean value (69.2). Mean value for this trait over all the environments was 93.3 q/ ha. Nandapur location was the most favourable environment for marketable yield as indicated by high environmental index (3.14) whereas Jeypore location resulted in less marketable yield with least environmental index (-6.54). The genotypes Kufri Lalima, Kufri Pukhraj and Kufri Lalit remained non-significant at 1 per cent probability while Kufri Khyati, Kufri Jyoti, Kufri Chipsona 3 and Kufri Kanchan signicant at 5 per cent probability level. A total of six varieties had high mean values for marketable yield with nonsignificant regression value and nonsignificant deviation from regression. This signposts their adaptability to all the 4 locations for this trait. Similar results were reported by Singh et al (1999) at Modipuram, Meerut while assessing 24 potato genotypes. Kufri Bahar with lower mean yield than the population average registered stability for favourable environments. Remaining genotypes marketable yield values deviated significantly from regression hence were found unstable over all location for Kharif cultivation.

CONCLUSION

Adaptability is the result of homoeostasis which refers to the buffering capacity of a genotype to environmental fluctuation. Genetically homogeneous populations such as pure line varieties depend heavily on individual buffering to stabilise productivity (Allard and Bradshaw 1964). General adaptability of Kufri Lalima, Kufri Pukhraj, Kufri Lalit, Kufri Khyati, Kufri Jyoti and Kufri Ashok to different locations might be ascribed to their greater individual buffering ability. Of the 16 varieties evaluated for 10 characters under study Kufri Lalit, Kufri Lalima, Kufri Pukhraj and Kufri Jyoti were found to be stable for 8, 7, 8 and 7 characters respectively. The mentioned varieties can be recommended to farmers for cultivation for off-season potato cultivation in Koraput region. However Kufri Chipsona 1 and Kufri Surya are adapted to favourable environment only due to their specific characteristics.

REFERENCES

Allard RW and Bradshaw AD 1964. Implications of genotype-environment interaction in applied plant breeding. Crop Science **4:** 503-598.

- Anonymous 2014a. 2nd advance estimates on area and production of tomato. Indian Horticulture Database 2014, National Horticulture Mission, Ministry of Agriculture, Government of India.
- Anonymous 2014b. Pocket book on agricultural statistics. Ministry of Agriculture, Government of India.
- Dass A, Lenka NK, Sudhishri S and Choudhury PR 2008. Influence of integrated nutrient management on production, economics and soil properties of tomato (*Lycopersicon esculentum*) under on-farm conditions in eastern Ghats of Odisha. Indian Journal of Agricultural Sciences 78(1): 40-43.
- Davoud H and Azimi J 2010. Yield stability analysis of potato cultivars in spring cultivation and after barley harvest cultivation. American-Eurasian Journal of Agriculture and Environment Sciences **9(2):** 140-144.
- Eberhart SA and Russell WA 1966. Stability parameters for comparing varieties. Crop Science **6:** 36-40.
- Haydar A, Islam MA, Ara T, Khokan EH and Hossain MM 2009. Stability analysis for tuber yield components in potato. International Journal of Sustainable Crop Production 4(4): 1-4.
- Joseph TA, Gopal J and Sood SK 2005. Genetic parameters and character associations in potato under subtropical plains and temperate hill conditions. Potato Journal **32(1-2):** 49-53.
- Kaushik SK, Bhardwaj V, Joseph TA, Gupta VK, Singh PH, Khurana SMP, Singh BP, Singh SV Pandey SK, Singh B and Sharma YK 2006. Stability of potato genotypes for yield, late blight resistance and their storage behaviour. Indian Journal Agricultural Sciences 76(1): 26-28.

- Luthra SK, Gopal J and Sharma PC 2005. Genetic divergence and its relationship with hetrosis in potato. Potato Journal **32(1-2):** 37-42.
- Luthra SK, Gopal J, Singh BP and Pandey SK 2009. Stability for tuber yield and its components in potato. Potato Journal **36(1-2)**: 20-24.
- Mane R, Sridevi O, Salimath PM, Deshpande SK and Khot AB 2010. Performance and stability of different tomato (*Solanum lycopersicum*) genotypes. Indian Journal of Agricultural Sciences **80(10)**: 898-901.
- Pandey SK, Singh SV and Manivel P 2005. Yield structure, agronomic performance and stability of new potato (*Solanum tuberosum*) hybrids in western Uttar Pradesh. Indian Journal of Agricultural Sciences **75**(7): 417-422.
- Patel RN, Patel NH, Pandey SK, Patel JM, Kanbi VH and Patel CK 2008. Adaptability of some potato cultivars in north Gujarat. Potato Journal **35(1-2):** 19-22.
- Sharma YK, Pandey SK, Khurana SMP, Singh SV, Jha G, Kumar S, Mondal AB, Nandekar DN and Mahapatra D 2003. Stability analysis of red skinned potato hybrids for tuber yield in northcentral and eastern plains of India. Potato Journal 30: 9-10.
- Singh SV, Gaur PC and Pandey SK 1999. Phenotypic stability of advanced hybrids for yield in early and main potato (*Solanum tuberosum*) crop. Indian Journal of Agricultural Sciences **69(3)**: 217-219.
- Vedula SK 2015. Variability studies in potato (Solanum tuberosum L). MSc thesis, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India.

Received: 29.12.2015 Accepted: 13.3.2015