Analysis of growth, physiological aspects and yield of elephant foot yam, *Amorphophallus campanulatus* Roxb Blume cv Gajendra in spice intercropping system under sloppy foothills of Imphal East

RAVI KIRAN THIRUMDASU, AK BIJAYA DEVI* and MOMOKO THOKCHOM*

Department of Vegetable and Spice Crops, Faculty of Horticulture
Uttar Banga Krishi Viswavidyalaya
Pundibari, Cooch Behar 736165 West Bengal, India
*Department of Horticulture, college of agriculture
Central Agricultural University, Imphal 795004 Manipur, India

Email for correspondence: hortiravi58@gmail.com

ABSTRACT

An investigation was carried out to study the effect of intercropping spice crops (ginger and turmeric) on growth, physiological aspects and yield of elephant foot yam. Sole crop of elephant foot yam was grown and between the inter-row spaces ginger/turmeric was intercropped in single/double row planting. Spacing of 90 x 90 cm between elephant foot yam and 25 x 25 cm for intercrops was adopted. Growth parameters were recorded from sole crop of elephant foot yam. Maximum fresh weight (918.48 g) and dry weight of the plant (107.68 g) were observed in elephant foot yam with single row turmeric. Superiority in physiological parameters like leaf area index (1.88) and harvest index (47.09%) was recorded in elephant foot yam with single row turmeric and sole crop of elephant foot yam respectively. Remarkable variation was observed in the performance of elephant foot yam-spice intercropping system under sloppy foothills of Imphal East.

Keywords: Amorphophallus; growth; intercropping; spice crops

INTRODUCTION

Elephant foot yam, Amorphophallus campanulatus Roxb Blume belongs to the Araceae family and is originated in southeast Asia. In India it is commercially grown in Gujarat,

Maharashtra, Bihar, Andhra Pradesh and Madhya Pradesh. In spite of wide scope and importance only limited efforts have been made towards elephant foot yam (EFY) research and development in northeast region of India. There is need for focused research efforts to increase the

area and production of minor tuber crops like elephant foot yam to meet the requirements of tribal areas.

No cultivable land under EFY has been noticed in Manipur. As local EFY grown in kitchen gardens of Manipur produces irritative corms with high calcium oxalate content acridity free cv Gajendra from Kovvur region of Andhra Pradesh has been introduced and studied (to meet the food requirements of tribal areas) in the spice intercropping system with local lines of turmeric and ginger to compensate in case of crop failure and ensure the profitable returns along with the food security for small holdings of Manipur. Even though inclusion of any of the intercrops reduced the yield of main crop (Chattopadhyay et al 2008, Singh et al 2013), highest profitability was recorded among intercropped treatments (Quayyam and Ebrahim 1988). Salter (1986) indicated that simultaneous growing of two or more crops not only gives more yield and net profit but it also cuts the cost of cultivation. Therefore the present investigation was carried out to study the growth, physiological aspects and yield of elephant foot yam cv Gajendra in spice intercropping system under sloppy foothills of Imphal East.

MATERIAL and METHODS

The present investigation was carried out at Horticultural Research Farm, Department of Horticulture, College of

Agriculture, Central Agricultural University, Imphal, during the year 2013 with elephant foot yam cv Gajendra. The experimental soil was acidic (pH 5.26) and clayey. The experiment was laid out in a randomized block design with seven treatments and three replications. The treatments comprised EFY sole crop (T₁), single row of turmeric planted in the inter-rows of EFY (T₂), double row of turmeric planted in the inter-rows of EFY (T₂), single row of ginger planted in the inter-rows of EFY (T₄), double row of turmeric planted in the interrows of EFY (T_5) , turmeric sole crop (T_6) and ginger sole crop (T₂). Constant spacing of 90 x 90 cm was followed in EFY and 25 x 25 cm spacing for turmeric/ginger rhizomes whereas in single row planting only one row of ginger/turmeric was planted in the inter-rows of EFY at 25 cm spacing between plant to plant. In double row planting 2 rows of turmeric/ginger were planted in the inter-rows of EFY at a distance of 25 x 25 cm plant to plant in rows.

Five uniform plants were selected randomly in each treatment for recording plant height (cm) from base to the tip of the plant, pseudo-stem height (cm) from the base of the plant to the point where pseudo-stem was divided into 3 rachises, canopy of the plant (cm²) and diameter of the pseudo-stem (cm). Estimation of leaf area for EFY was done according to the formula developed by Ravi et al (2010) which is as follows:

Total leaf area= P x 0.65 x total number of leaflets per plant

where P is the average value of length and breadth of few observations.

The pseudo-stem at the top was divided into three rachises which were further branched and bore many sessile lateral primary leaflets and one terminal leaflet. This number of leaflets was counted and the average was calculated. Corm fresh weight (g), corm dry weight (g), whole plant fresh weight (g) and whole plant dry weight (g) were recorded from 60 days after planting (DAP) with 30 days interval.

Leaf area index (LAI) of the plant and harvest index (%) were recorded by the formula given by Watson (1947) and Yoshida (1981) respectively.

Harvest Index=
$$\frac{\text{Economical yield}}{\text{Biological yield}} \times 100$$

Net assimilation rate (NAR) (g/m²/day), crop growth rate (CGR) (g/day) and Relative growth rate (RGR) (g/g/d) were recorded by the following formulae given by Gregory (1926), Gardner et al (2010) and Reddy and Reddi (2008) respectively:

NAR =
$$\frac{W_2 - W_1}{L_2 - L_1} \times \frac{\log L_2 - \log L_1}{t_2 - t_1}$$

CGR=
$$\frac{W_2 - W_1}{t_2 - t_1}$$

$$RGR = \frac{\log W_2 - \log W_1}{t_2 - t_1}$$

where W_1 , W_2 and L_1 , L_2 refer to the whole plant dry weight and leaf area on two successive periods at t_1 and t_2 . Rhizome weight (g) of the intercrops has been recorded on per plant basis.

RESULTS and DISCUSSION

Growth parameters of elephant foot vam

Spice crops raised as intercrop affected the growth of EFY (Table 1) significantly under all the treatments. Maximum plant height (73.61 cm), pseudostem height (63.89 cm), plant canopy (9911.33 cm²), diameter of pseudo-stem (5.55 cm), leaf area (78.74 cm²) and number of leaflets (307.04) were recorded in EFY sole crop. Amanullah et al (2006a) and Silwana and Lucas (2002) also reported that intercropping reduced vegetative growth of component crops in line with the present findings.

It has been noticed that corm formation of EFY was just initiated at 60 days after planting and among the observations recorded from the destructive samples, maximum corm fresh weight (807.81 g) and corm dry weight (173.52 g) were recorded from sole EFY (Table 2b). Maximum fresh weight of the plant (917.70 g) was recorded from the EFY with double row of turmeric whereas

Table 1. Effect of intercropping spice crops on growth parameters of elephant foot yam

Treatment	Plant height (cm)	Pseudo-stem height (cm)	Plant canopy (cm²)	Diameter of pseudo-stem (cm)	Leaf area (cm²)	# leaflets
T,	73.61	63.89	9911.33	5.55	78.74	307.04
T_2	63.06	53.55	6570.67	3.96	69.11	273.72
T_3	70.56	58.45	7633.33	4.53	73.70	289.59
T_4	70.89	59.45	8406.67	4.70	61.47	247.30
T ₅	62.00	53.51	8200.00	4.45	67.00	266.43
T_6	_	_	_	_	_	_
T,	_	_	_	_	_	_
SEm±	1.89	1.78	567.39	0.29	3.22	11.14
$\mathrm{CD}_{\scriptscriptstyle{0.05}}$	6.18	5.82	1850.36	0.94	10.50	36.34

Table 2a. Effect of intercropping spice crops on destructive samples of elephant foot yam

Treatment	Corm fresh weight (g)			Corm dry weight (g)			
	90 DAP	120 DAP	150 DAP	90 DAP	120 DAP	150 DAP	
$T_{_1}$	164.59	451.33	807.81	51.50	103.88	173.52	
T_2	46.55	287.67	526.81	11.14	58.85	128.17	
T_3	120.44	367.04	602.15	41.85	87.16	154.49	
$T_{_4}$	150.67	398.33	684.33	51.02	89.37	163.92	
T_5	63.00	327.63	539.41	31.69	68.31	143.46	
T_6	_	_	_	_	_	_	
T_7	_	_	_	_	_	_	
SEm±	4.22	10.85	18.47	1.51	5.08	5.83	
CD _{0.05}	13.76	35.37	60.23	4.94	16.55	19.00	

maximum whole plant dry weight (106.61 g) was recorded in EFY with single row of turmeric (Table 2b). However among the intercropped treatments EFY intercropped with single row of ginger recorded maximum fresh weight (950.00 g) and dry weight

(235.18 g) of the corm. The experimental data showed that all these parameters increased rapidly from 60 to 120 days and thereafter increased at diminishing rate upto 150 days after planting irrespective of treatments. The competition between the

Table 2b. Effect of intercropping spice crops on destructive samples of elephant foot yam

Treatment	V	Whole plant	fresh weight	t (g)	Wł	ole plant c	lry weight (g	g)
	60 DAP	90 DAP	120 DAP	150 DAP	60 DAP	90 DAP	120 DAP	150 DAP
\overline{T}_1	292.22	593.33	747.67	907.11	29.84	46.79	65.48	81.62
T_2	344.89	628.81	802.11	918.48	23.66	64.00	88.48	106.61
T_3	331.15	564.92	755.67	917.70	14.12	34.67	52.93	93.03
T_4	304.67	613.33	722.44	913.89	14.30	28.66	71.45	89.13
T_5	286.00	505.67	677.89	795.04	14.71	33.38	77.57	103.15
T_6	_	_	_	_	_		_	_
T_7	_	_	_	_	_	_	_	_
SEm±	9.78	23.90	22.94	26.19	1.19	2.78	2.50	3.39
$CD_{0.05}$	31.90	77.93	74.80	85.39	3.90	9.07	8.16	11.05

DAP= Days after planting

EFY and intercrops for various resources might pave the way for reduction in the above parameters. The effect of intercrops on EFY plant dry weight could be an important factor which results in the conversion of more dry matter for growth and therefore reduced carbohydrate availability for storage corm. This competition resulted in inefficient conversion of dry matter into biomass among the intercropped treatments. Whereas conversion of simultaneously supplied assimilates to the corm might be the reason for superior EFY sole crop.

Physiological parameters of elephant foot vam

The data regarding the physiological parameters as affected by various treatments have been presented in Table 3. In spite of treatment effect the LAI of EFY

increased with age (Njoku and Muoneke 2008). The highest LAI was recorded in EFY with single row of turmeric (1.88). Irrespective of the treatment effect, net assimilation rate and relative growth rate of the EFY were continuously reduced with the duration of the crop but the crop growth rate increased with advancing of days. The higher rate of net assimilation and relative growth at initial 60-90 days after planting could be due to rapid increase of dry matter in the plant and corm of the EFY and this observation is in line with the findings of Das et al (1997) and Ram and Singh (2003). Even though intercropped EFY showed higher NAR, CGR and RGR than the sole EFY in accordance by Ram and Singh (2003), these parameters were having no significant affect at 150 days after planting. Maximum harvest index (47.09%) was recorded from sole EFY which was

Table 3. Effect of intercropping spice crops on physiological parameters of elephant foot yam

Treatment	Leaf area index	dex	На	Harvest index	dex	Net ass (g/	Net assimilation rate (g/m²/day)	rate	Ü	Crop growth rate (g/day)	h rate)	Relat	Relative growth rate (g/g/day)	rate
	90 120 15 DAP DAP D	150 g	90 1 DAP D	120 150 DAP DAF	150 DAP	90 DAP	120 DAP	150 DAP	60-90 DAP	90-120 120-1 DAP DAP	60-90 90-120 120-150 90 DAP DAP DAP DA	90 DAP	120 DAP	150 DAP
T T	0.73 1.08 1.09 1.09	1.59	30.02 37.70 47.09	37.70 47.09	17.09	0.0509	0.0270 0.0200	0.0509 0.0270 0.0200 2.28 0.0473 0.0380 0.0244 1.72	2.28	2.37	2.86	0.0173	0.0078	0.0060
T_3				2.71	9.61	0.0519	0.0519 0.0263 0.0264	0.0264	2.08	2.12	3.58	0.0245	0.0088	0.0082
$\mathbf{T}_{_{4}}$	0.37 0.80 1.	1.18	19.72 35.52 42.80	5.52 4	2.80	0.0669	0.0454	0.0669 0.0454 0.0284	2.18	2.70	3.07	0.0249	0.0101	0.0066
$T_{\scriptscriptstyle{5}}$	0.62 0.95 1.	1.45	11.22 32.56 40.51	2.56 4	10.51	0.0459	0.0459 0.0392 0.0278		1.68	2.69	3.36	0.0215	0.0117	0.0076
$T_{_6}$					ı									
\mathbf{T}_{7}		ı	ı	1	ı									
SEm±	0.03 0.091 0.	0.125 (0.65 1	1.09	1.13	0.0025	0.0024 0.0027		0.11	0.12	0.34	0.00095	0.00061 0.00076	0.00076
${ m CD}_{0.05}$	0.12 0.295 0.	0.407	2.10 3.55 3.67	.55	.67	0.0083	0.0083 0.0080 NS	NS	0.37	0.38	NS	0.00311	0.00311 0.00198 NS	NS

DAP= Days after planting

Table 4. Effect of intercropping on yield of elephant foot yam and spice crops

Treatment	Corm yield (tons/ha)	Rhizome wight (g/plant)
T ₁	13.02	_
$T_2^{'}$	07.17	334.44
T_3^2	11.27	264.44
T_4	11.73	195.56
T ₅	07.20	204.56
T_6	_	264.22
T ₇	_	234.44
SEm±	0.55	17.03
$CD_{0.05}$	1.78	55.54

significantly higher than the other treatments and was significantly reduced when intercropped with turmeric/ginger and the observation is in line with the findings of Daellenbach et al (2005). Higher biological yield than the economical yield could be the reason for this reduction.

Yield of elephant foot yam and spice crops

In respect of the EFY corm yield (Table 4) experimental results showed significant differences among the different intercropping systems. Maximum corm yield (13.02 tons/ha) was recorded from EFY sole crop which was significantly higher than the rest of the treatments. Among the intercropped treatments maximum yield (11.73 tons/ha) was recorded in EFY with single row of ginger and minimum corm yield of EFY (7.17 tons/ha) in EFY with single row of turmeric was due to high biological yield.

Whereas higher rhizome weight of the intercrop has been recorded in the EFY intercropped with single row of turmeric (334.44 g/plant). On the other hand the lowest rhizome weight of intercrops was recorded in single row planting of ginger (195.56 g/plant).

Higher rhizome weight of turmeric in single row planting could be due to minimum intra-specific competition. Poor yield performance of EFY in intercropped treatments may be due to simultaneous structural growth and corm/rhizome development between EFY and intercrops (turmeric/ginger) and thus demands simultaneous supply of assimilates to both sinks which may lead to intensive competition between the two sinks resulting in less synthesis of food material and poor development of corm in term of yield and yield attributes. These findings are analogous to Osundare and Agboola

(2003), Amanullah et al (2006a) and Amanullah et al (2006b) in cassava and Chattopadhyay et al (2008) in EFY.

REFERENCES

- Amanullah MM, Alagesan A, Vaiyapuri K, Pazhanivelan S and Sathyamoorthi K 2006a. Intercropping and organic manures on the growth and yield of cassava (*Manihot esculenta* Crantz). Research Journal of Agriculture and Biological Sciences **2(5)**: 183-189.
- Amanullah MM, Vaiyapuri K, Alagesan A, Somasundaram E, Sathyamoorthi K and Pazhanivelan S 2006b. Effect of intercropping and organic manures on the yield and biological efficiency of cassava intercropping system (*Manihot esculenta* Crantz). Research Journal of Agriculture and Biological Sciences 2(5): 201-208.
- Chattopadhyay A, Mukhopadhyay SK and Rajib N 2008. Short duration vegetables as intercrops in elephant foot yam in the gangetic alluvium of West Bengal: analysis of growth, yield and economics. Journal of Root Crops **34(1)**: 10-14.
- Daellenbach GC, Kerridge PC, Wolfe MS, Frossard E and Finckh MR 2005. Plant productivity in cassava-based mixed cropping systems in Columbian hillside farms. Agriculture, Ecosystems and Environment **105**: 595-614.
- Das PK, Sen H, Banerjee NC and Panda PK 1997. Biomass production and growth rate at different phenophases of elephant foot yam as influenced by chemical treatments. Indian Journal of Agricultural Research 31: 115-121.
- Gardner FP, Pearce RB and Mitchell RL 2010. Physiology of crop plants. Scientific Publishers, India, pp 202-205.
- Gregory FG 1926. The effect of climate condition on growth of barley. Annals of Botany **40:** 1-26.

- Njoku DN and Muoneke CO 2008. Effect of cowpea planting density on growth, yield and productivity of component crops in cowpea/cassava intercropping system. Journal of Tropical Agriculture, Food, Environment and Extension 7(2): 106-113.
- Osundare B and Agboola AA 2003. Effect of different companion crops on the performance of cassava. Moor Journal of Agricultural Research **4(1)**: 50-53.
- Quayyam MA and Ebrahim AM 1988. Productivity and profitability of cabbage intercropped with vegetables. Bangladesh Horticulture **16(2)**: 44-46.
- Ram SN and Singh B 2003. Physiological growth parameters, forage yield and nitrogen uptake of sorghum (*Sorghum bicolor*) as influenced with legume intercropping, harvesting time and nitrogen level. Indian Journal of Agronomy **48**(1): 38-41.
- Ravi V, George J, Ravindran CS, Suja G, Nedunchezhiyan M, Byju G and Naskar SK 2010. Method for leaf area determination in elephant foot yam (*Amorphophallus paeoniifolius* Dennst Nicolson). Journal of Root Crops **36(1):** 78-82.
- Reddy TY and Reddi GHS 2008. Principles of agronomy, Kalyani Publishers, Ludhiana, Punjab, India, 474p.
- Salter PJ 1986. An alternative method of cutting cost of production. National Vegetable Research Station, Wellesbourne, UK, Grower **105(24)**: 23-30.
- Silwana TT and Lucas EO 2002. The effect of planting combination, weeding and yield of component crops of maize-pumpkin intercrops.

 Journal of Agricultural Science 138: 193-200.
- Singh RP, Bhushan S, Kumar S, and Shanker R 2013. Yield assessment of elephant foot yam grown under multilayer vegetable cropping system. The Bioscan **8(4)**: 1237-1239.

Analysis of foot yam in spice intercropping system

Watson DJ 1947. Comparative physiological studies in growth of field crops. 1. Variation in net assimilation rate and leaf area between species and varieties and within and between years. Annals of Botany 11: 41-76.

Yoshida S 1981. Fundamentals of rice crop. International Rice Research Institute, Los Banos, Laguna, Philippines, 61p.

Received: 14.5.2015 Accepted: 21.7.2015