Effect of plant growth substances and antioxidants on growth, flowering, yield and economics of garden pea, Pisum sativum L cv Bonneville

T THOMSON, GS PATEL, KS PANDYA, JS DABHI and YOGESH PAWAR

Department of Vegetable Science, College of Horticulture SD Agricultural University, Sardarkrushinagar 385506 Gujarat, India

Email for correspondence: thomsonmonu@gmail.com

ABSTRACT

A field study was conducted at Horticulture Instructional Farm, CP College of Agriculture, SD Agricultural University, Sardarkrushinagar, Gujarat to find out the effect of plant growth substances and antioxidants on growth, flowering, yield and economics of garden pea, *Pisum sativum* L cv Bonneville. Plants were sprayed with treatments viz control, NAA (25 and 50 ppm), GA₃ (50 and 100 ppm), 2,4-D (5 and 10 ppm), acetyl salicylic acid (100 ppm and 200 ppm), ascorbic acid (100 and 200 ppm) 30 days after sowing. The results revealed that the plant growth substance GA₃ (100 ppm) showed highest growth parameters. Days to first flowering ranged between 48.97 and 52.75. The minimum days (48.97) to first flowering were taken by the treatment GA₃ (100 ppm) and all other treatments were statistically at par for the days taken to first flowering. The data on number of days taken for first and last picking after sowing and number of pickings were found non-significant among different treatments. The maximum yield (114.01 q/ha), net income of Rs 177642/ha and highest B:C ratio (4.52:1) were obtained in treatment 2,4-D (5 ppm).

Keywords: Garden pea; plant growth regulator; growth; flowering; yield; economics

INTRODUCTION

Pea, *Pisum sativum* L is a popular and highly nutritive pulse crop. A large portion of pea is processed, canned, frozen or dehydrated for consumption in offseason. It is precious for a vegetarian diet. India is the 2nd largest producer of pea in the world. In India crop is primarily grown in the states of Uttar Pradesh, Maharashtra, Jharkhand, Himachal Pradesh and Punjab.

In India area under this crop is 4.42 lakh ha with the production of 42.39 lakh MT (Anon 2014).

Increasing the production of pea green pods and dry seeds with high quality could be achieved through using the foliar application of plant growth substances and antioxidants. The present study was conducted to find out the optimum levels of plant growth substances and antioxidants on growth, flowering, yield and economics of garden pea cv Bonneville.

MATERIAL and METHODS

The investigations were conducted at Horticulture Instructional Farm, CP College of Agriculture, SD Agricultural University, Sardarkrushinagar during the year 2013 with eleven treatments viz NAA (25 and 50 ppm), GA₃ (50 and 100 ppm), 2,4-D (5 and 10 ppm) and antioxidants acetyl salicylic acid (100 and 200 ppm) and ascorbic acid (100 and 200 ppm) along with control (water) sprayed after 30 days after sowing of pea variety Bonneville.

The experiment was laid out in a randomized block design with four replications. To raise the crop recommended package of practices was followed. The crop was sown in November 2013 during Rabi season. The effect of different treatments was studied on growth, flowering, yield and economics of the crop on ten randomly selected plants. Growth attributes were determined by measuring the vine length and length and number of nodes on main vine. Besides days taken to first flowering, days taken to first and last picking after sowing and number of pickings were recorded. The mean data were subjected to statistical analysis following analysis of variance technique (Nigam and Gupta 1979).

RESULTS and DISCUSSION

Growth parameters

In the present investigations the treatment GA₂ (100 ppm) gave significantly higher vine length (58.36 cm) and minimum (45.74 cm) was recorded in control at 45 DAS (Table 1). These results are in conformation with those of Doijode (1975), Mishriky et al (1990), Bora and Sarma (2003), Pandey et al (2004), Brumbaugh and Stewen (2008), Shraiy and Hegazi (2009), Braas (2010), Schroeder (2011), Musmade et al (2013), Emongor (2007), Sharma and Lashkari (2009) and Ngatia et al (2004). The growth substance GA₃ is recognized as a growth promoter which stimulates the rapid cell elongation in meristematic zone of vegetative plant organs.

The treatment GA₃ (100 ppm) maintained significantly higher length of internode (5.54 cm) and it was statistically at par with the treatments GA₃ (50 ppm, 5.51 cm) and ASA (200 ppm, 5.24 cm) while minimum length was recorded in treatment control (4.57 cm) at last picking. These results are in agreement with the findings of Kof et al (1998) and Rai et al (2006). Due to cell elongation and cell division the length of internode increased hence here GA₃ played an important role.

The treatment GA_3 (100 ppm) gave significantly higher number of nodes on main vine (23.10) while minimum was recorded

Table 1. Effect of plant growth substances and antioxidants on growth parameters of garden pea cv Bonneville

Treatment	Vine length 45 DAS (cm)	Length of internode at last picking (cm)	# nodes at last picking
Control	45.74	4.57	20.42
NAA (25 ppm)	48.23	4.72	20.50
NAA (50 ppm)	48.28	4.90	20.67
GA ₃ (50 ppm)	55.73	5.51	21.95
GA ₃ (100 ppm)	58.36	5.54	23.10
2,4-D (5 ppm)	47.46	4.81	21.05
2,4-D (10 ppm)	46.03	4.61	20.49
Acetyl salicylic acid (100 ppm)	45.89	4.99	21.27
Acetyl salicylic acid (200 ppm)	49.36	5.24	21.67
Ascorbic acid (100 ppm)	45.83	4.77	20.47
Ascorbic acid (200 ppm)	47.42	4.88	20.90
SEm±	0.69	0.13	0.37
$CD_{0.05}$	2.00	0.39	1.08

Table 2. Effect of plant growth substances and antioxidants on pickings and flowering of garden pea cv Bonneville

Treatment	Days to first flowering	First picking (days)	Last picking (days)	# pickings
Control	52.75	105.50	119.00	2.50
NAA (25 ppm)	52.27	101.75	117.75	2.75
NAA (50 ppm)	51.92	100.25	116.75	3.25
GA ₃ (50 ppm)	49.62	98.00	117.50	3.00
GA ₃ (100 ppm)	48.97	97.00	117.50	3.25
2,4-D (5 ppm)	50.75	95.50	117.50	3.25
2,4-D (10 ppm)	51.62	101.75	117.50	3.00
Acetyl salicylic acid (100 ppm)	51.47	102.75	118.75	2.75
Acetyl salicylic acid (200 ppm)	51.35	100.75	117.50	3.00
Ascorbic acid (100 ppm)	52.42	101.50	116.75	3.25
Ascorbic acid (200 ppm)	51.55	92.00	115.75	3.50
SEm±	1.04	1.90	1.95	0.10
CD _{0.05}	3.02	NS	NS	NS

Table 3. Effect of plant growth substances and antioxidants on yield and economics of garden pea cv Bonneville

Treatment	Cost of cultivation	Yield/ ha (q)	Gross income	Net income	B:C ratio
	(Rs/ha)		(Rs/ha)	(Rs/ha)	
Control	50606	73.29	146580	95974	2.89:1
NAA (25 ppm)	50935	79.27	158540	107605	3.11:1
NAA (50 ppm)	51514	79.70	159400	107886	3.09:1
GA ₃ (50 ppm)	62306	86.79	173580	111274	2.78:1
GA ₃ (100 ppm)	74256	89.48	178960	104704	2.41:1
2,4-D (5 ppm)	50378	114.01	228020	177642	4.52:1
2,4-D (10 ppm)	50400	82.13	164260	113860	3.25:1
Acetyl salicylic acid (100 ppm)	50595	81.96	163920	113325	3.23:1
Acetyl salicylic acid (200 ppm)	50833	84.23	168460	117627	3.31:1
Ascorbic acid (100 ppm)	50890	84.70	169400	118510	3.32:1
Ascorbic acid (200 ppm)	51423	86.49	172980	121557	3.36:1

in control (20.42) at last picking. Similar results of increase in the mean number of nodes per plant by application of GA_3 were obtained by Pandey et al (2004) and Musmade et al (2013).

Flowering parameters

Days to first flowering ranged between 48.97 and 52.75. The minimum days (48.97) to first flowering were taken by the treatment GA₃ (100 ppm) and all other treatments were statistically at par for the days taken to first flowering. These results are supported by the findings of Chovatia et al (2010), Chatterjee and Choudhuri (2012), Medhi and Borbora (2002) and Uddain et al (2009). Early flowering is due to early completion of vegetative growth and better nourishment

of plants. The data on number of days taken for first and last picking after sowing and number of pickings were found non-significant among different treatments (Table 2).

Yield and economics

The maximum yield (114.01 q/ha), net income of Rs 177642/ha and highest B:C ratio (4.52:1) were obtained in treatment 2,4-D (5 ppm). The minimum net income of Rs 95974/ha was obtained in control while lowest B:C ratio (2.41:1) was obtained in GA₃ (100 ppm) (Table 3)

CONCLUSION

From the investigations it can be concluded that the growth regulator GA₃

(100 ppm) effectively increased the vegetative growth of pea like vine length, length of internodes, number of nodes, days taken for initiation of first flowering whereas 2,4-D (5 ppm) was effective in increasing the yield and highest benefit:cost ratio.

REFERENCES

- Anonymous 2014. Area and production of vegetable crops for the year 2013-2014. NHB, India.
- Bora RK and Sarma CM 2003. Effect of plant growth regulators on growth, yield and protein content of pea (cv Azad P-1). Indian Journal of Plant Physiology 8: 672-676.
- Braas L 2010. The Effect of gibberellic acid and paclobutrazol levels on *Pisum sativum*. Indian Journal of Pulses Research **6:** 207-209.
- Brumbaugh MS and Stewen G 2008. The effects of gibberellic acid on the growth of dwarf pea plants. Laboratory 6: Pea Lab Section-C, Biology 100, Laboratory Manual, pp 79-81.
- Chatterjee R and Choudhuri P 2012. Influence of foliar application of plant growth promoters on growth and yield of vegetable cow pea (*Vigna unguiculata* L). Journal of Crop and Weed **8(1):** 158-159.
- Chovatia RS, Ahlawat TR, Mepa SV and Giriraj J 2010. Response of cowpea (*Vigna unguiculata* L) cv GUJ-4 to the foliar application of plant growth regulating chemicals. Vegetable Science **37(2):** 196-197.
- Doijode SD 1975. Effect of growth regulators on growth and yield of garden pea (*Pisum sativum* var Hortense L) MSc (Agric) thesis, University of Agricultural Sciences, Bangalore, Karnataka, India.
- El-Shraiy AM and Hegazi AM 2009. Effect of acetylsalicylic acid, indole-3- butyric acid and gibberellic acid on plant growth and yield of pea (*Pisum sativum* L). Australian Journal of Basic and Applied Sciences **3(4)**: 3514-3523.

- Emongor VE 2007. Gibberellic acid (GA₃) influence on vegetative growth, nodulation and yield of cowpea (*Vigna unguiculata* L). Journal of Agronomy **6(4):** 509-517.
- Kof EM, Chuvasheva ES, Kefeli VI and Kandykov IV 1998. Response of pea genotypes contrasting in leaf morphology and stem height to gibberellic acid and chlorocholine chloride. Russian Journal of Plant Physiolofy **45:** 279-387.
- Medhi AK and Borbara TK 2002. Effect of growth regulators on dry matter production, flower initiation and pod setting of French bean. Research Crops **3:** 119-122.
- Mishriky JF, EL-Fadaly KA and Badawi MA 1990. Effect of gibberellic acid (GA₃) and chlormequat (CCC) on growth, yield and quality of pea (*Pisum sativum* L). Bulletin of Faculty of Agriculture University of Coiro, **41**(3): 785-797.
- Musmade AM, Pagare S, Shinde KG and Wagh RS 2013. Effect of plant growth regulators on growth, seed yield and seed quality of pea (*Pisum sativum* L) cv Phule Priya. MSc (Agric) thesis, Mahat Phule Krishi Vidyapeeth, Rahuri Maharashtra, India.
- Ngatia TM, Shibairo SI, Emongor VE and Obukosia SD 2004. Effect of levels and timing of application of GA₃ on growth and yield components of common beans. African Crop Science Journal **12(2):** 123-131.
- Nigam AK and Gupta VK 1979. Handbook on analysis of agricultural experiments. 1st edn, IASRI Publications, New Delhi, India.
- Pandey AK, Sunil KT, Singh PM and Rai M 2004. Effect of GA₃ and NAA on vegetative growth, yield and quality of garden pea (*Pisum sativum* L). Vegetable Science **31(1):** 63-65.
- Rai N, Yadav DS, Patel KK, Asati BS and Chaubey T 2006. Effect of plant growth regulators on growth, yield and quality of tomato (*Solanum lycopersicon*) grown under mid hill of Meghalaya. Vegetable Science **33(2):** 180-182.
- Schroeder N 2011. How will gibberellic acid affect pea plants? California State Science Fair 2011, Project Summary. Project Number J1933.

Thompson et al

Sharma SJ and Lashkari CO 2009. Effect of plant growth regulators on yild and quality of cluster bean (*Cyamopsis tetragonaloba* L) cv Pusa Navabahar. Asian journal of Horticulture **4(1):** 145-146.

Uddain J, Hossain KMA, Mostafa MG and Rahman MJ 2009. Effect of different plant growth regulators on growth and yield of tomato. International journal of Sustainable Agriculture 1(3): 58-63.

Received: 10.12.2014 Accepted: 24.1.2015