# Management of leaf hopper infesting cowpea by seed treatment and foliar spray with neonicotinoid insecticides

## MITHUANTU, DM KORAT\* and PATTAPU SREELAKSHMI

Department of Agricultural Entomology, College of Agriculture Kerala Agricultural University, Vellayani 695522 Kerala, India \*Directorate of Research, Anand Agricultural University Anand 388110 Gujarat, India

Email for correspondence: mithugrace@gmail.com

#### **ABSTRACT**

Field experiments were conducted during summer and Kharif 2013 to study the bioefficacy of neonicotinoid insecticides (imidacloprid, thiamethoxam and acetamiprid) as seed treatment alone and in combination with one (30 days after germination, DAG) or two (30 and 45 DAG) foliar sprays against the leaf hopper, *Empoasca kerri* Pruthi infesting cowpea. Neonicotinoid insecticides (imidacloprid, thiamethoxam and acetamiprid) as seed treatment combined with two foliar sprays at 30 and 45 DAG effectively managed the leaf hopper. Significantly greater efficacy against *E kerri* and higher green pod yield in cowpea were observed due to thiamethoxam (0.58 leaf hopper/3 leaves) followed by imidacloprid (0.82 leaf hopper/3 leaves) and acetamiprid (1.06 leaf hopper/3 leaves).

**Keywords:** Neonicotinoids; seed treatment; foliar spray; leaf hopper; cowpea

### INTRODUCTION

Cowpea, Vigna unguiculata (L) Walp is one of the major pulse crops grown widely in India. The seedlings of cowpea are severely attacked by many early and late season sucking insect pests resulting in stunting of the crop. Neonicotinoid insecticides as seed treatment and in combination with foliar spray can be effective option for the control of both early and late season sucking insect pests of cowpea. Leaf hopper, Empoasca kerri Pruthi is one of the major sucking pests appearing in the early

crop stages of cowpea. Several researchers have proved the efficacy of neonicotinoids as either seed treatment alone (Nakat et al 2002, Nault et al 2004, Patel et al 2012) or foliar spray alone (Rabari, 2006, Rohit 2012, Patel 2009, Sutaria et al 2010) against leaf hoppers infesting various pulse crops.

However the information on the effect of the combination treatments of seed treatment and foliar spray against leaf hopper, *E kerri* infesting cowpea is very less. The present research was therefore

conducted to find out the efficacy of various neonicotinoid insecticides viz imidacloprid, thiamethoxam and acetamiprid as seed treatment alone and in combination with foliar spray for the management of the leaf hopper, *E kerri* infesting cowpea.

## **MATERIAL and METHODS**

Bioefficacy of three neonicotinoid insecticides (imidacloprid, thiamethoxam and acetamiprid) as seed treatment alone and in combination with foliar spray was evaluated against leaf hopper, *E kerri* infesting cowpea (variety Gujarat Cowpea-1) by conducting field experiments in randomized block design with ten treatments and three replications during summer and Kharif 2013 at the agronomy farm of Anand Agricultural University, Anand, Gujarat.

The treatments evaluated were  $T_1$  (seed treatment (ST) with imidacloprid 600 FS @ 5 ml/kg seed, 3 g ai/kg seed),  $T_2$  ( $T_1$  + foliar spray of imidacloprid 17.8 SL, 0.008%, 40 g ai/ha at 30 days after germination (DAG),  $T_3$  ( $T_1$  + foliar spray of imidacloprid 17.8 SL, 0.008%, 40 g ai/ha at 30 and 45 DAG),  $T_4$  (ST with thiamethoxam 35 FS @ 5 ml/kg seed, 1.5 g ai/kg seed),  $T_5$  ( $T_4$  + foliar spray of thiamethoxam 25 WG, 0.01%, 50 g ai/ha at 30 DAG),  $T_6$  ( $T_4$  + foliar spray of thiamethoxam 25 WG, 0.01%, 50 g ai/ha at 30 and 45 DAG),  $T_7$  (ST with acetamiprid 20 SP @ 20 g/kg seed, 4 g

ai/kg seed),  $T_8$  ( $T_7$  + foliar spray of acetamiprid 20 SP, 0.01%, 50 g ai/ha at 30 DAG),  $T_9$  ( $T_7$  + foliar spray of acetamiprid 20 SP, 0.01%,50 g ai/ha at 30 and 45 DAG) and  $T_{10}$  (untreated control, water spray).

Five plants were randomly selected and tagged for recording the observations. Observations on leaf hopper were recorded by taking counts from three leaves (top, middle and bottom region) of each tagged plant. Based on these observations mean number of leaf hoppers per three leaves was calculated. The observations were recorded prior as well as 1, 3 and 7 days after spray (DAS). Green pod yield of cowpea (kg/ha) in each treatment was recorded during every picking. Recommended dosages of fertilizers were applied and other agronomic practices were done. The data on leaf hopper population and green pod yield of cowpea were analysed by ANOVA technique (Steel and Torrie 1980).

## **RESULTS and DISCUSSION**

During summer population of leaf hopper, *E kerri* recorded before the impose of first spray (at 30 DAG) revealed significant differences among treatments (Table 1) owing to the effect of seed treatment at the time of sowing. Significantly lower population of leaf hopper was found in the treatments where seeds were treated

|                                                                             |        |        |                       | # 1eai noppers/3 leaves (at different intervals) |        | m) a   | , , , , , , , , , , , , , , , , , , , |                       |        |        | rouicds and        |
|-----------------------------------------------------------------------------|--------|--------|-----------------------|--------------------------------------------------|--------|--------|---------------------------------------|-----------------------|--------|--------|--------------------|
|                                                                             |        |        | l <sup>st</sup> spray |                                                  |        |        | 2                                     | 2 <sup>nd</sup> spray |        |        | periods and sprays |
|                                                                             | BS     | 1 DAS  | 3 DAS                 | 7 DAS                                            | Pooled | BS     | 1 DAS                                 | 3 DAS                 | 7 DAS  | Pooled |                    |
| T.                                                                          | 1.57*  | 1.62   | 1.86                  | 2.07                                             | 1.85   | 2.10   | 2.14                                  | 2.11                  | 2.03   | 2.09   | 1.97               |
| -                                                                           | (1.96) | (2.12) | (2.96)                | (3.78)                                           | (2.92) | (3.91) | (4.08)                                | (3.95)                | (3.62) | (3.87) | (3.38)             |
| Т,                                                                          | 1.60   | 1.25   | 1.11                  | 1.21                                             | 1.19   | 5.06   | 2.11                                  | 2.12                  | 2.01   | 2.08   | 1.64               |
| 4                                                                           | (2.06) | (1.06) | (0.73)                | (0.96)                                           | (0.92) | (3.74) | (3.95)                                | (3.99)                | (3.54) | (3.83) | (2.19)             |
| $T_{_{_{3}}}$                                                               | 1.59   | 1.28   | 1.10                  | 1.19                                             | 1.19   | 2.04   | 1.29                                  | 1.13                  | 1.05   | 1.16   | 1.17               |
| ,                                                                           | (2.03) | (1.14) | (0.71)                | (0.92)                                           | (0.92) | (3.66) | (1.16)                                | (0.78)                | (0.60) | (0.84) | (0.87)             |
| $\mathbf{T}_{_{4}}$                                                         | 1.41   | 1.44   | 1.70                  | 1.83                                             | 1.66   | 2.01   | 2.03                                  | 2.06                  | 1.97   | 2.02   | 1.84               |
|                                                                             | (1.49) | (1.57) | (2.39)                | (2.85)                                           | (2.25) | (3.54) | (3.62)                                | (3.74)                | (3.38) | (3.58) | (2.88)             |
| $T_{\rm s}$                                                                 | 1.43   | 1.10   | 1.01                  | 1.04                                             | 1.05   | 2.02   | 2.05                                  | 1.98                  | 1.99   | 2.01   | 1.53               |
|                                                                             | (1.54) | (0.71) | (0.52)                | (0.58)                                           | (0.60) | (3.58) | (3.70)                                | (3.42)                | (3.46) | (3.54) | (1.84)             |
| $T_{\epsilon}$                                                              | 1.39   | 1.08   | 0.99                  | 1.06                                             | 1.04   | 2.00   | 1.13                                  | 1.00                  | 1.04   | 1.06   | 1.05               |
|                                                                             | (1.43) | (0.67) | (0.48)                | (0.62)                                           | (0.58) | (3.50) | (0.78)                                | (0.50)                | (0.58) | (0.62) | (0.60)             |
| $\mathbf{T}_{_{7}}$                                                         | 1.78   | 1.92   | 2.10                  | 2.23                                             | 2.08   | 2.21   | 2.24                                  | 2.21                  | 2.12   | 2.19   | 2.14               |
|                                                                             | (2.67) | (3.19) | (3.91)                | (4.47)                                           | (3.83) | (4.38) | (4.52)                                | (4.38)                | (3.99) | (4.30) | (4.08)             |
| $T^{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | 1.79   | 1.32   | 1.23                  | 1.36                                             | 1.31   | 2.16   | 2.16                                  | 2.17                  | 2.07   | 2.13   | 1.72               |
|                                                                             | (2.70) | (1.24) | (1.01)                | (1.35)                                           | (1.22) | (4.16) | (4.16)                                | (4.21)                | (3.78) | (4.04) | (2.46)             |
| $T_{\scriptscriptstyle{9}}$                                                 | 1.77   | 1.33   | 1.25                  | 1.33                                             | 1.30   | 2.17   | 1.32                                  | 1.24                  | 1.13   | 1.23   | 1.27               |
|                                                                             | (2.63) | (1.27) | (1.06)                | (1.27)                                           | (1.19) | (4.21) | (1.24)                                | (1.04)                | (0.78) | (1.01) | (1.11)             |
| $T_{10}$                                                                    | 2.28   | 2.34   | 2.33                  | 2.37                                             | 2.35   | 2.39   | 2.34                                  | 2.38                  | 2.22   | 2.31   | 2.33               |
|                                                                             | (4.70) | (4.98) | (4.93)                | (5.12)                                           | (5.02) | (5.21) | (4.98)                                | (5.16)                | (4.43) | (4.84) | (4.93)             |
| $SEm\pm$                                                                    |        |        |                       |                                                  |        |        |                                       |                       |        |        |                    |
| L                                                                           | 0.12   | 0.11   | 0.10                  | 0.13                                             | 0.07   | 0.13   | 0.12                                  | 0.13                  | 0.09   | 90.0   | 0.05               |
| Ь                                                                           |        | ı      |                       |                                                  | 0.04   | 1      |                                       |                       | ı      | 0.04   | 0.03               |
| S                                                                           | 1      | ı      | 1                     | ı                                                | 1      | 1      | 1                                     | 1                     | 1      | 1      | 0.02               |
| TxS                                                                         |        | 1      |                       |                                                  |        | 1      |                                       |                       | 1      | 1      | 0.04               |
| TxP                                                                         | 1      | 1      | 1                     | 1                                                | 0.12   | ı      |                                       |                       | 1      | 0.12   | 0.07               |
| PxS                                                                         | 1      | 1      | 1                     | 1                                                |        | ı      |                                       |                       | 1      | ı      | 60.0               |
| $T \times P \times S$                                                       | ,      | ,      | ı                     | 1                                                | 1      | 1      | ı                                     | 1                     | ı      |        | 0.12               |

0.13 NS 0.06 0.11 NS 0.24 NS NS

\* Figures are  $\sqrt{x+0.5}$  transformed values and those in parentheses are re-transformed values, BS= Before spray, DAS= Days after spray, NS= Non-significant, T= Treatment, P= Period, S= Spray with either imidacloprid, thiamethoxam or acetamiprid ( $T_1$  to  $T_0$ ).

Pooled over periods' (1, 3 and 7 DAS) data worked out for first spray revealed that minimum (T<sub>5</sub>: 0.60 and T<sub>6</sub>: 0.58 leaf hopper/3 leaves) number of leaf hoppers were found in the two combination treatments (seed treatment combined with one or two foliar sprays) of thiamethoxam followed by the two combination treatments of imidacloprid (0.92 leaf hopper/3 leaves for both the treatments). With respect to leaf hopper incidence the two combination treatments of imidacloprid were at par with that of acetamiprid (T<sub>8</sub>: 1.22 and T<sub>9</sub>: 1.19 leaf hopper/3 leaves). The sole treatment (ST alone) proved least effective against the pest but was found to be better than untreated check. Leaf hopper incidence recorded before second spray (45 DAG) indicated same level of the pest in all the experimental plots as it is evident from the non-significant results.

Pooled over periods data worked out for second spray showed the superiority of thiamethoxam, imidacloprid and acetamiprid as ST coupled with two foliar sprays (at 30 and 45 DAG) in controlling the leaf hopper population than ST alone and ST combined with one foliar spray (30 DAG). Pooled over periods and sprays data indicated that minimum incidence of leaf hopper, *E kerri* was registered in the combination treatments of ST coupled with

two foliar sprays at 30 and 45 DAG. Significantly lower population of leaf hopper was found in the treatment of thiamethoxam ( $T_6$ : 0.60 leaf hopper/3 leaves) followed by imidacloprid ( $T_3$ : 0.87 leaf hopper/3 leaves) and acetamiprid ( $T_9$ : 1.11 leaf hopper/3 leaves). These treatments were found significantly more effective over rest of the treatments (ST alone and ST combined with one foliar spray at 30 DAG).

Observations recorded before first spray (30 DAG) during Kharif season (Table 2) also reveal that all the insecticidal treatments exhibited significantly less population of leaf hopper than the untreated plots because of the impact of seed treatment with neonicotinoids. Pooled over periods' data for first spray indicated that least number of leaf hoppers was observed in the combination treatments (ST combined with one or two foliar sprays). These treatments proved significantly more effective in controlling the leaf hopper population in cowpea than rest of the treatments. Leaf hopper counts made before second spray showed nonsignificant differences among the treatments.

Pooled over periods'data for second spray showed the superiority of the combination treatments of ST+two foliar sprays at 30 and 45 DAG as in case of summer. Pooled data (periods and sprays) showed that least (0.58 leaf hopper/3 leaves) number of leaf hoppers were

registered in  $T_6$  (ST with thiamethoxam + two foliar sprays of thiamethoxam at 30 and 45 DAG) followed by  $T_3$  (ST with imidacloprid + two foliar sprays of imidacloprid, 0.80 leaf hopper/3 leaves) and  $T_9$  (ST with acetamiprid + two foliar sprays of acetamiprid, 1.04 leaf hopper/3 leaves).

Overall pooled data computed for both seasons (Table 3) clearly indicate that significantly less number of leaf hoppers was found in  $T_6$  (ST with thiamethoxam + two foliar sprays of thiamethoxam: 0.58 leaf hopper/3 leaves) and  $T_3$  (ST with imidacloprid + two foliar sprays of imidacloprid: 0.82 leaf hopper/3 leaves). Both these treatments proved significantly superior over rest of the treatments. ST with acetamiprid + two foliar sprays of acetamiprid at 30 and 45 DAG (1.06 leaf hopper/3 leaves) was also found to be the better treatment and stood next to above.

Pooled data on cowpea green pod yield (Table 4) worked out for summer and Kharif season revealed that all the plots treated with neonicotinoid insecticides produced significantly higher yields of green pods over untreated check. Maximum (7439 kg/ha) yield was harvested from  $T_6$  (ST with thiamethoxam + two foliar sprays of thiamethoxam) followed by  $T_3$  (ST with imidacloprid + two foliar sprays of imidacloprid) and  $T_9$  (ST with acetamiprid + two foliar sprays of acetamiprid). These treatments

|                     |        |        | # leaf hc             | # leaf hoppers/3 leaves (at different intervals) | ves (at diffe | rent interv | als)   |           |        |        | Pooled over           |
|---------------------|--------|--------|-----------------------|--------------------------------------------------|---------------|-------------|--------|-----------|--------|--------|-----------------------|
|                     |        |        | I <sup>st</sup> spray |                                                  |               |             |        | 2nd spray |        |        | perious and<br>sprays |
|                     | BS     | 1 DAS  | 3 DAS                 | 7 DAS                                            | Pooled        | BS          | 1 DAS  | 3 DAS     | 7 DAS  | Pooled |                       |
| Т,                  | 1.65*  | 1.72   | 1.89                  | 2.09                                             | 1.90          | 2.07        | 2.04   | 2.01      | 1.89   | 1.98   | 1.94                  |
| -                   | (2.22) | (2.46) | (3.07)                | (3.87)                                           | (3.11)        | (3.78)      | (3.66) | (3.54)    | (3.07) | (3.42) | (3.26)                |
| $\mathbf{T}_2$      | 1.67   | 1.21   | 1.13                  | 1.18                                             | 1.17          | 2.01        | 2.01   | 1.99      | 1.88   | 1.96   | 1.56                  |
| 1                   | (2.29) | (0.96) | (0.78)                | (0.89)                                           | (0.87)        | (3.54)      | (3.54) | (3.46)    | (3.03) | (3.34) | (1.93)                |
| $T_3$               | 1.68   | 1.20   | 1.10                  | 1.16                                             | 1.15          | 2.03        | 1.22   | 1.06      | 1.04   | 1.11   | 1.14                  |
|                     | (2.32) | (0.94) | (0.71)                | (0.84)                                           | (0.82)        | (3.62)      | (0.99) | (0.62)    | (0.58) | (0.73) | (0.80)                |
| $\mathbf{T}_{_{4}}$ | 1.49   | 1.54   | 1.76                  | 1.96                                             | 1.75          | 1.95        | 1.97   | 1.94      | 1.78   | 1.90   | 1.82                  |
|                     | (1.72) | (1.87) | (2.60)                | (3.34)                                           | (2.56)        | (3.30)      | (3.38) | (3.26)    | (2.67) | (3.11) | (2.81)                |
| $T_{_{5}}$          | 1.50   | 1.09   | 0.98                  | 1.04                                             | 1.04          | 1.92        | 2.00   | 1.95      | 1.85   | 1.93   | 1.48                  |
|                     | (1.75) | (0.69) | (0.46)                | (0.58)                                           | (0.58)        | (3.19)      | (3.50) | (3.30)    | (2.92) | (3.22) | (1.69)                |
| $T_{\epsilon}$      | 1.48   | 1.07   | 0.99                  | 1.02                                             | 1.03          | 1.91        | 1.10   | 0.98      | 1.04   | 1.04   | 1.04                  |
|                     | (1.69) | (0.64) | (0.48)                | (0.54)                                           | (0.56)        | (3.15)      | (0.71) | (0.46)    | (0.58) | (0.58) | (0.58)                |
| $\mathbf{T}_{7}$    | 1.83   | 1.92   | 2.05                  | 2.15                                             | 2.04          | 2.11        | 2.11   | 2.06      | 1.92   | 2.03   | 2.04                  |
|                     | (2.85) | (3.19) | (3.70)                | (4.12)                                           | (3.66)        | (3.95)      | (3.95) | (3.74)    | (3.19) | (3.62) | (3.66)                |
| T <sub>s</sub>      | 1.86   | 1.32   | 1.22                  | 1.36                                             | 1.30          | 2.10        | 2.06   | 2.05      | 1.94   | 2.02   | 1.66                  |
| )                   | (2.96) | (1.24) | (0.99)                | (1.35)                                           | (1.19)        | (3.91)      | (3.74) | (3.70)    | (3.26) | (3.58) | (2.25)                |
| T,                  | 1.84   | 1.30   | 1.23                  | 1.39                                             | 1.31          | 2.08        | 1.33   | 1.11      | 1.10   | 1.18   | 1.24                  |
|                     | (2.88) | (1.19) | (1.01)                | (1.43)                                           | (1.22)        | (3.83)      | (1.27) | (0.73)    | (0.71) | (0.89) | (1.04)                |
| $\mathbf{T}_{10}$   | 2.27   | 2.29   | 2.28                  | 2.35                                             | 2.31          | 2.23        | 2.14   | 2.09      | 2.02   | 2.08   | 2.20                  |
| . [                 | (4.65) | (4.74) | (4.70)                | (5.02)                                           | (4.84)        | (4.47)      | (4.08) | (3.87)    | (3.58) | (3.83) | (4.34)                |
| SEm±                |        | ,      | •                     | 0                                                | 0             | ,           |        | ;         |        | (      | (                     |
| T                   | 0.13   | 0.11   | 0.10                  | 60.0                                             | 0.05          | 0.12        | 0.14   | 0.11      | 0.12   | 90.0   | 0.05                  |
| Ь                   |        | ı      |                       | ı                                                | 0.03          |             |        | ı         | ı      | 0.04   | 0.02                  |
| S                   | ı      | ı      | 1                     | ı                                                | 1             |             | 1      | 1         | 1      | 1      | 0.02                  |
| TxS                 | ı      | ı      | ı                     | ı                                                | 1             |             | ı      | ı         | 1      | ı      | 0.03                  |
| ТхР                 | 1      |        |                       |                                                  | 0.09          |             | 1      |           | 1      | 0.12   | 90.0                  |
| PxS                 | ı      | ı      | ı                     | ı                                                | 1             |             | ı      | 1         | 1      | ı      | 0.07                  |
| T x D x C           | ,      |        | ,                     | ,                                                |               | ı           | ,      |           |        |        | 0.10                  |

0.14 NS 0.05 0.09 NS 0.21 NS

Figures are transformed values and those in parentheses are re-transformed values, BS= Before spray, DAS= Days after spray, NS= Non-significant, T= Treatment, P= Period, S= Spray

registered significantly higher yields than the treatments of ST coupled with single spray application at 30 DAG and ST alone with neonicotinoids.

Effectiveness of thiamethoxam, acetamipirid and imidacloprid either as foliar spray alone (Rabari 2006, Patel 2009, Rohit 2012) or seed treatment alone (Patel et al 2012) against the leaf hopper, *E kerri* infesting cowpea has been reported by earlier researchers in the past which is in agreement with the present findings. However it was found that the ST combined with foliar sprays were more superior to the sole treatments (seed treatment alone) in this study.

Khutwad et al (2002) reported that combination treatments of thiamethoxam and imidacloprid (0.2% seed treatment + 0.02% foliar spray) were more effective against the leaf hopper infesting green gram rather than seed treatment and foliar spray alone and recorded maximum yield. It was also found that thiamethoxam was found to be superior to imidacloprid in all respects which was also observed in the present study.

Thus it can be concluded that neonicotinoid insecticides (imidacloprid, thiamethoxam and acetamiprid) as seed treatment combined with two foliar sprays at 30 and 45 DAG effectively manage the leaf hopper, *E kerri* infesting cowpea thereby resulting in increased yields.

Table 3. Effect of neonicotinoid insecticides on population of leaf hopper, *E kerri* infesting cowpea (pooled over seasons)

| Treatment       |              | # leaf hoppers/3 leav | es                  |
|-----------------|--------------|-----------------------|---------------------|
|                 | Summer 2013  | Kharif 2013           | Pooled over seasons |
|                 | 1.97* (3.38) | 1.94 (3.26)           | 1.95 (3.30)         |
| T,              | 1.64 (2.19)  | 1.56 (1.93)           | 1.60 (2.06)         |
| $T_{2}^{2}$     | 1.17 (0.87)  | 1.14 (0.80)           | 1.15 (0.82)         |
| T.              | 1.84 (2.88)  | 1.82 (2.81)           | 1.83 (2.85)         |
| $T_5^4$         | 1.53 (1.84)  | 1.48 (1.69)           | 1.51 (1.78)         |
| T.              | 1.05 (0.60)  | 1.04 (0.58)           | 1.04 (0.58)         |
| $T_7^6$         | 2.14 (4.08)  | 2.04 (3.66)           | 2.09 (3.87)         |
| T <sub>8</sub>  | 1.72 (2.46)  | 1.66 (2.25)           | 1.69 (2.36)         |
| $T_9^8$         | 1.27 (1.11)  | 1.24 (1.04)           | 1.25 (1.06)         |
| T <sub>10</sub> | 2.33 (4.93)  | 2.20 (4.34)           | 2.27 (4.65)         |

\*Figures are  $\sqrt{x + 0.5}$  transformed values and those in parentheses are re-transformed values; NS= Non-significant

|               | Summer 2 | 2013                 | Kharif 201 | 13                 | Pooled over seasons |                                          |
|---------------|----------|----------------------|------------|--------------------|---------------------|------------------------------------------|
|               | SEm±     | $\mathrm{CD}_{0.05}$ | SEm±       | CD <sub>0.05</sub> | SEm±                | $\mathrm{CD}_{\scriptscriptstyle{0.05}}$ |
| T (Treatment) | 0.05     | 0.13                 | 0.05       | 0.14               | 0.03                | 0.09                                     |
| S (Season)    | -        | -                    | -          | -                  | 0.02                | 0.04                                     |
| TxS           | -        | -                    | -          | -                  | 0.05                | NS                                       |
| CV (%)        | 12.77    |                      | 11.23      |                    | 12.05               |                                          |

Table 4. Effect of neonicotinoid insecticides on green pod yield of cowpea

| Treatment                                          |             | Yield (kg/ha) |        |  |
|----------------------------------------------------|-------------|---------------|--------|--|
|                                                    | Summer 2013 | Kharif 2013   | Pooled |  |
| $T_1$                                              | 4376        | 3077          | 3727   |  |
|                                                    | 5635        | 4311          | 4973   |  |
| T,                                                 | 7782        | 6676          | 7229   |  |
| $T_{A}^{3}$                                        | 4526        | 3215          | 3871   |  |
| $T_{5}^{\dagger}$                                  | 5682        | 4596          | 5139   |  |
| $egin{array}{cccccccccccccccccccccccccccccccccccc$ | 7962        | 6916          | 7439   |  |
| $T_7^{\circ}$                                      | 4265        | 2799          | 3532   |  |
| T。                                                 | 5558        | 4098          | 4828   |  |
| T <sub>9</sub><br>T <sub>10</sub><br>SEm±          | 7463        | 6315          | 6889   |  |
| T' <sub>10</sub>                                   | 3033        | 1800          | 2417   |  |
| SEm±                                               |             |               |        |  |
| T (Treatment)                                      | 360.07      | 330.07        | 221.19 |  |
| S (Season)                                         | -           | -             | 109.22 |  |
| TxS                                                | -           | -             | 345.39 |  |
| C D <sub>0.05</sub>                                |             |               |        |  |
| T (Treatment)                                      | 1069.82     | 980.69        | 630.47 |  |
| S (Season)                                         | -           | -             | 321.28 |  |
| TxS                                                | -           | -             | NS     |  |
| CV (%)                                             | 11.06       | 13.05         | 11.94  |  |

NS=Non-significant

### **REFERENCES**

- Khutwad DS, Nakat RV and Chavan BP 2002. Seed dressers and foliar sprays on sucking pests of green gram, *Vigna radiata* (L) Wilczek. Pestology **26(7)**: 57-59.
- Nakat RV, Khutwad DS and Chavan BP 2002. Efficacy of newer insecticides as seed dressers on sucking pests of green gram, *Vigna radiata* (L) Wilczek. Pestology **26(7):** 27-29.
- Nault BA, Taylor AG, Urwiller M, Rabaey T and Hutchison WD 2004. Neonicotinoid seed treatments for managing potato leaf hopper infestations in snap bean. Crop Protection 23(2): 147-154.
- Patel PS, Patel IS, Panickar B and Ravindrababu Y 2012. Management of sucking pests of cowpea through seed treatment. Trends in Biosciences 5(2): 138-139.
- Patel SK 2009. Population dynamics and management of insect pest complex of vegetable cowpea, *Vigna unguiculata* (L) Walpers in middle Gujarat

- condition. MSc (Agric) thesis, Anand Agricultural University, Anand, Gujarat, India.
- Rabari DH 2006. Biology of cowpea semilooper, *Plusia orichalcea* (Fabricius) population dynamics and bio-efficacy of different insecticides against insect pests of forage cowpea. MSc (Agric) thesis, Anand Agricultural University, Anand, Gujarat, India.
- Rohit MI 2012. Evaluation of newer insecticides and bio-pesticides against insect pests of cowpea and residue status of some synthetic insecticides in green pods. MSc (Agric) thesis, Anand Agricultural University, Anand, Gujarat, India.
- Steel RGD and Torrie JH 1980. Principles and procedures of statistics: a biometrical approach. 2<sup>nd</sup> edn, McGraw Hill Book Company, New York, 633p.
- Sutaria VK, Motka MN, Jethva DM and Ramoliya DR 2010. Field efficacy of insecticides against jassid, *Empoasca kerri* (Pruthi) in soybean. Annals of Plant Protection Sciences **18(1)**: 94-97.

Received: 8.3.2016 Accepted: 12.7.2016