Adoption of eco-friendly crop management practices by the farmers in Tamil Nadu

D JEBAPREETHA, M ESAKKIMUTHU* and REXLIN SELVIN

Tamil Nadu Agricultural University, Madurai 625104 Tamil Nadu, India *Department of Agricultural Extension and Communication, College of Agriculture GB Pant University of Agriculture and Technology, Pantnagar 263145 UK, India

Email for correspondence: esakkimuthu418@yahoo.com

© Society for Advancement of Human and Nature 2017

ABSTRACT

The study was carried out to find out the relationship and influence of social-economic-communication-psychological characteristics of the respondents/farmers on adoption of eco-friendly crop management practices. The study included 120 farmers from five intensive cultivation practicing villages of Cumbum block of Theni district in Tamil Nadu. The respondents were interviewed personally by a well-structured and pretested interview schedule. Percentage analysis, cumulative frequency, correlation coefficient and multiple regression were used to analyse the collected data. Age, farm waste disposal behaviour and adoption behaviour of integrated pest management (IPM) showed a positive and significant while the livestock possession, innovativeness and scientific orientation showed a negative and significant contribution to adoption of eco-friendly crop management practices of the respondents.

Keywords: Adoption; eco-friendly; intensive cultivation; scientific orientation; characteristics

INTRODUCTION

In India green revolution has witnessed a quantum jump in agricultural production with the introduction of high yielding varieties of various crops and by following intensive cultivation practices with the use of fertilizers, pesticides and other inorganic inputs. Maliwal (2005) reported that environment is a word which describes in the aggregate all of the external forces, influences and conditions which affect the life, nature, behavior, growth, development and maturation of living organisms. The harmful effects caused to an agricultural system are due to the mismanagement of natural resources. In order to balance this situation eco-friendly farming which aims at cultivating the land and raising crops in such a way so as to keep the soil alive in good health may be an alternative to the present system of farming which solely depends on chemicals. Accordingly Shashidhara (2012) revealed that majority of the respondents were in medium level adoption of ecofriendly technologies. With respect to adoption on integrated nutrient

management majority of the respondents were not practicing appllication of organic manures, selection of crops and cropping pattern, mixed cropping, intercultivation practices, application of bio-fertilizers to soil and use of limited inorganic fertilizers. The maximum vegetable growers had low extent of adoption of the eco-friendly management practices followed by medium and high extent of adoption (Patel et al 2013).

Received: 25.1.2016/Accepted: 17.5.2016

In a research study on awareness about environmental issues and management of natural resources conducted by Arunachalam (2003) it was found that the variables viz education, farm size, social participation, risk orientation, farm waste disposal behaviour, integrated pest management, integrated water management, integrated weed management, integrated nutrient management, great concern for environment, progressive nature and farm machinery use behaviour of the respondents had their influence on the adoption of natural resource management practices. The innovativeness, attitude, perception on organic manures, perception on feasibility, perception

on health hazards, information source utilization, decision making and perception on environmental degradation were variables that had positive and significant association with adoption of eco-friendly technologies (Chandra 2001). The eco-friendly technology utilization among farmers concluded that participation in trainings and perception on environmental degradation had shown a positive significant contribution for adoption of eco-friendly technologies (Nalini 2004). It is essential to know the characteristics of the intensive growers and their influence on the dependent variable to have a clear understanding about their background, attitude, perception and mindset in general.

The present study was done with an objective to assess the relationship and influence of the independent variables on adoption of eco-friendly crop management practices among the farmers.

METHODOLOGY

The study was conducted in Theni district of Tamil Nadu where Cumbum block of Uthamapalayam Taluk was selected for the study by purposive sampling. Among eleven revenue villages of Cumbum block five villages namely Annumandanpatti, C Pudhupatti, KK Patti, NT Patti (North) and Melagudalore (North) were selected by judgment sampling and based on the judgment of assistant agricultural officer, the agricultural officer and the agricultural development officer of the block. Proportionate sampling method was employed to draw the 120 respondents from the five revenue villages. For this study ex post facto research design was followed. The data were collected with the help of a well-structured and pretested interview schedule. With the statistical tool of percentage analysis, cumulative frequency, correlation and multiple regression the data were analyzed.

Table 1. Distribution of the respondents according to different characteristics

Variable	Parameter/category	f	%
X	Age		
1	Young	39.00	32.50
	Middle	34.00	28.30
	Old	47.00	39.20
Χ,	Education		
2	Illiterate	09.00	07.50
	Functionally literate	00.00	00.00
	Primary education	17.00	14.20
	Middle school education	29.00	24.20
	Secondary school education	25.00	20.80
	Collegiate	40.00	33.30
X_3			
3	Low	27.00	22.50
	Medium	00.00	00.00
	High	93.00	77.50
X_4			
4	Up to 2.5 (marginal)	11.00	09.17
	2.6 to 5 (small)	40.00	33.33
	5.01 to 10 (medium)	41.00	34.17
	10.1 and above (big)	28.00	23.33
X ₅	, e,		
3	Low	30.00	25.00
	Age Young 39.00 Middle 34.00 Old 47.00 Education 17.00 Illiterate 09.00 Functionally literate 00.00 Primary education 17.00 Middle school education 29.00 Secondary school education 25.00 Collegiate 40.00 Farming experience 27.00 Low 27.00 Medium 00.00 High 93.00 Farm size (acres) Up to 2.5 (marginal) 11.00 2.6 to 5 (small) 40.00 5.01 to 10 (medium) 41.00 10.1 and above (big) 28.00 Farm power utilization	40.00	
	High	42.00	35.00
\mathbf{X}_{6}			
U	_	42.00	35.00
	Tank	00.00	00.00
	Well		12.50
	Canal + well	63.00	52.50
X_7	Livestock possession		
,	-	88.00	73.34
	Medium	00.00	00.00
	High	32.00	26.66

X ₈	Cropping intensity Low Medium High		09.00 69.00 42.00	07.: 57.: 35.	50	
X ₉ Far	m waste disposal behavior	Method of	disposal		f	%
equ	ste water after washing the containers, ipments used for storing/putting mical inputs		ne main field afely outside		93.00 27.00	77.50 22.50
the	stics and aluminum containers after use of inputs like herbicides and other micals	purpose	l used for domestic	:	17.00 56.00 47.00	14.16 46.66 39.18
Disj	posal of crop waste	Left uncared In situ plou	t uncared itu ploughing paring compost for future use			37.50 57.50 05.00
Disj	posal of tree waste	Fuel purpos Left as such Stored for f	ı	66.00 47.00 07.00	55.00 39.16 5.84	
Disj	posal of animal waste Animal waste	Domestic p Fuel purpos Compost p	se	90.00 16.00 14.00	75.01 13.33 11.66	
	Dead animal/bird	Burnt safely Buried			55.00 65.00	45.83 54.17
X ₁₀ Concern for environment			Agree		Disa	gree
			f	%	f	%
It is	our duty to plant more trees to conserve en	vironment	109.00	90.84	11.00	09.16
	ollowing organic farming practices we can h hy environment	nave clean and	83.00	69.17	37.00	30.83
	should not pollute the air at any cost including activities	ling intensive	107.00	89.17	13.00	10.83
	ronmental education to all is necessary or is a precious resource and should not be p	polluted	105.00 112.00	87.50 93.34	15.00 08.00	12.50 06.66
	ost care should be taken to preserve the nat e going for chemical control of pests	ural enemies	110.00	91.67	10.00	08.33
STL-	-based fertilizer application will help to avo	oid pollution	95.00	79.17	25.00	20.83
	the situation is so emergent that we have t mum use of chemical inputs to avoid environds		106.00	88.34	14.00	11.66
	Parameter	f	%			
X ₁₁	Community participation Low	101.00	84.20			
	Medium	19.00	15.80)		
K ₁₂	High Environmental education	00.00	00.00			
	Low Medium	40.00 56.00	33.33 46.67			
	High	24.00	20.00			

	Parameter	f	%
X ₁₃	Innovativeness		
13	Low	15.00	12.50
	Medium	44.00	36.66
	High	61.00	50.84
X ₁₄	Information seeking behaviour		
14	Low	37.00	30.83
	Medium	43.00	35.84
	High	40.00	33.33
X ₁₅	Economic motivation		
15	Low	29.00	24.16
	Medium	35.00	29.16
	High	56.00	46.68
X_{16}	Scientific orientation		
16	Low	37.00	30.83
	Medium	37.00	30.83
	High	46.00	38.34

X ₁₇ Adoption of IPM practices	Adopted		Not adopted	
	f	%	f	%
Cultural practices				
Selection of right season	120.00	100.00	00.00	00.00
Summer ploughing (recommended tillage operations)	118.00	98.34	02.00	01.66
Raising pest and disease resistant varieties	50.00	41.67	70.00	58.33
Maintaining weed free environment	113.00	94.17	07.00	05.83
Training and plastering of bunds	113.00	94.17	07.00	05.83
Synchronized sowing	114.00	95.00	06.00	05.00
Mechanical practices				
Removal and destruction of pests, infected plant parts	117.00	97.50	03.00	02.50
Jse of light traps	16.00	13.33	104.00	86.67
Jse of sticky traps	02.00	01.66	118.00	98.34
Jse of scarecrow	81.00	67.50	39.00	32.50
otanical methods				
se of natural enemies	00.00	00.00	120.00	100.00
se of pheromones, traps	15.00	12.50	105.00	87.50
Jse of bio-pesticides	07.00	05.83	113.00	94.17
Chemical methods				
Jse of recommended doses of insecticides/fungicides	00.00	00.00	120.00	100.00
se of recommended doses of herbicides	00.00	00.00	120.00	100.00
eed treatment with chemicals	00.00	00.00	120.00	100.00
voiding repeated use of same pesticides	00.00	00.00	120.00	100.00
STL-recommended fertilizers	00.00	00.00	120.00	100.00

RESULTS and DISCUSSION

Socio-economic-communication-psychological characteristics of respondents: Seventeen characteristics were taken up for analysis in the study (Table 1). Majority of the respondents were found to be old and had a high level of education ie primary education to college level. Most of them had high level of farming experience with medium-size land holdings (5-10 acres) and medium farm power utilization behaviour. More than half of the respondents depended on both canal and well for irrigation and had low

livestock possession. A majority of the respondents had medium level of cropping intensity and had not disposed the farm waste in a way that would reduce the environmental issues documented. The respondents possessed low level of community participation to protect the environment but showed their great concern for environment. More than two-third of the respondents had medium to high level of environmental education, innovativeness, information seeking behaviour, economic motivation and scientific orientation. Among the integrated pest management practices, cultural and mechanical practices were widely adopted by the

majority of the respondents whereas none had adopted botanical and chemical methods.

Adoption of eco-friendly crop management practices: The contribution of independent variables was studied with the dependent variables adoption. To find out the relationship between the dependent variables adoption and the seventeen independent variables the simple correlation was worked out and the results are presented in the Table 2.

Correlation: The contribution of the independent variables namely age, educational status, farming experience, farm size, farm power utilization behavior, source of irrigation, livestock possession, cropping intensity, farm waste disposal behaviour, concern for environment, community participation, environmental education, innovativeness, information seeking behaviour, economic motivation, scientific orientation and adoption behaviour on IPM with adoption. were studied

It can be seen in the table that three variables namely age, educational status, adoption behaviour on IPM and farm waste disposal behaviour had positive and significant relation with adoption. Livestock possession, innovativeness and scientific orientation had a negative and significant relation with adoption. Thus it may be stated that the adoption was a function of age, educational status, farm waste disposal behaviour, livestock possession, innovativeness and scientific orientation.

Multiple regression: Multiple regression was carried out to find out relative contribution of each variable towards the adoption rate of the respondents. The Table 2 shows that F-value was significant and R₂ value was 0.456 which was interpreted as 45.60 per cent variation in the adoption level explained by the seventeen independent variables selected for the study. Since the F-value was significant the prediction equation was fitted for the adoption of the respondents as given below:

$$Y_{3} = 46.302 + 0.416^{**}X_{1} + 0.189X_{2} - 0.040X_{3} - +0.124X_{4} + 0.026X_{5} - 0.044X_{6} - 0.487^{**}X_{7} + 0.004X_{8} + 0.231^{**}X_{9} - 0.015X_{10} + 0.008X_{11} + 0.354^{**}X_{12} - 0.509^{**}X_{13} + 0.010X_{14} - 0.008X_{15} - 0.107^{**}X_{16} + 0.247^{**}X_{17} + 0.008X_{17} - 0.008X_{18} + 0.247^{**}X_{18} + 0.247$$

The equation shows that the regression coefficient of the variables viz age (X_1) , farm waste disposal behaviour (X_9) , environmental education (X_{12}) and adoption behaviour of IPM (X_{17}) had shown a

positive and significant while livestock possession (X_7) , innovativeness (X_{13}) and scientific orientation (X_{16}) had a negative and significant contribution to adoption of the respondents at one per cent level of significance.

Table 2. Correlation and multiple regression analysis of characteristics of respondents with their adoption

Variable	Parameter	ʻr' value	Regression coefficient	SE	t-value
$X_{_1}$	Age	0.183*	0.416	0.164	2.532**
$X_2^{'}$	Educational status	0.202*	0.189	0.098	1.924^{NS}
X_3^2	Farming experience	0.100	-0.040	0.225	-0.178^{NS}
X_4	Farm size	0.082	0.124	0.171	0.725^{NS}
ζ_5^4	Farm power utilization	0.171	0.026	0.082	0.318^{NS}
X_6	Source of irrigation	0.068	-0.044	0.118	-0.375^{NS}
ζ_7°	Livesstock possession	-0.263**	-0.487	0.137	-3.564**
$\zeta_{8}^{'}$	Cropping intensity	0.050	0.004	0.005	0.812^{NS}
ζ_9	Farm waste disposal behaviour	0.292**	0.231	0.078	2.966**
ζ ₁₀	Concern for environment	-0.057	-0.015	0.103	-0.149 ^{NS}
ζ ₁₁	Community participation	0.088	0.008	0.011	0.676^{NS}
ζ ₁₂	Environment education	0.149	0.354	0.112	3.153**
ζ ₁₃	Innovativeness	-0.303**	-0.509	0.198	-2.564**
ζ14	Information seeking behaviour	0.067	0.010	0.014	0.697^{NS}
14	Economic motivation	0.021	-0.008	0.040	-0.197^{NS}
ζ ₁₆	Scientific orientation	-0.277**	-0.107	0.038	-2.845**
X ₁₇	Adoption behaviour on IPM	0.189*	0.247	0.077	3.200**

R²= 0.456, F= 5.030**, **Significant at 1% level, *Significant at 5% level, NS= Non-significant

This reveals that a unit increase in age, educational status, farm waste disposal behaviour, environmental education, adoption behaviour on IPM etc by a unit would result in an increase in the adoption of eco-friendly crop management practices of the respondents by 0.416, 0.189, 0.231, 0.354 and 0.247 units respectively. A unit increase in livestock possession, innovativeness and scientific orientation would decrease the adoption level of the respondents by 0.487, 0.509 and 107 units respectively.

As the age increased the respondents saw the change that took place in cultivation by experience and further education and environmental education helped them to gain awareness about the ill-effects caused by modern agriculture. This would have influenced them to go for adoption of eco-friendly crop management practices. Farm waste disposal behaviour is the extent to which the farm waste is disposed off when the disposal behaviour is in-line with eco-preservation and it will influence the adoption of eco-friendly crop management practices. As adoption behaviour on integrated pest management increases the adoption level is also increased.

The innovators who followed scientific technologies generally adopted modern/new technologies ignoring eco-friendly technologies. This might be the reason for negative and significant contribution of innovativeness and scientific orientation to the adoption of eco-friendly crop management practices. At present as the demand for organic manure is very high which is highly remunerative the farmers have the tendency to sell the manure rather than applying it in their own fields. They have the practices of using chemical fertilizers which are cheaper than the organic manures. This could be the reason for negative and significant contribution of livestock possession to the adoption of eco-friendly crop management practices.

CONCLUSION

The findings on socio-economiccommunication-psychological characteristics of farmers and the relationship of these characteristics with the dependent variable will help the extension workers to frame suitable extension strategies for creating awareness about imminent environmental hazards caused by the use of chemical fertilizers, pesticides and heavy implements. It would help the planners, policy makers and extension workers to find out the ways to raise the level of adoption of ecofriendly practices in order to reduce the quantum of environmental hazards by agricultural chemicals, development of pest resistance, pollution etc in the long run and thereby protecting the environment.

REFERENCES

- Arunachalam R 2003. Awareness about environmental issues and management of natural resources by farmers for sustainable agriculture. PhD thesis, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India, 78p.
- Chandra R 2001. Effectiveness of eco-friendly cultivation practices in paddy analysis. MSc (Agric) thesis, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India, 29p.
- Maliwal GL 2005. Crop production with waste water. Agrotech Publishing Academy, New Delhi, India, 85p.
- Nalini M 2004. Eco-friendly technologies utilization among paddy farmers. MSc (Agric) thesis, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India, 54p.
- Patel N, Choudhary S and Swarnakar 2013. Study on adoption of eco-friendly management practices by vegetable growers in Indore district. IOSR Journal of Agriculture and Veterinary Science 2(4): 22-25.
- Shashidhara KK 2012. Adoption of eco-friendly technologies by cotton growers. Indian Research Journal of Extension Education 112(4) (Special issue, Vol I): 217-221.