Estimation of genetic variability, heritability and genetic advance for yield and quality traits in some indigenous Basmati rice (*Oryza sativa* L) genotypes

UMESH, HK JAISWAL, T SRAVAN, SHOWKATA WAZA and RAHUL BHARDWAJ*

Department of Genetics and Plant Breeding, Institute of Agricultural Sciences Banaras Hindu University, Varanasi 221005 Uttar Pradesh, India *Department of Plant Breeding and Genetics, Rajasthan Agricultural Research Institute (SKNAU), Durgapura 302018 Rajasthan, India

Email for correspondence: umesh7155@gmail.com

ABSTRACT

The present investigation was carried out on 24 rice genotypes to study different genetic parameters viz range, coefficient of variation (CV), heritability and genetic advance for yield attributing and quality characters. The data indicated the existence of genetic variability for all the traits varying from lower to higher coefficients of variance. The genotypic coefficient of variation (GCV) for characters like spikelets/panicle and alkali spread value were 28.23 and 21.77 respectively whereas phenotypic coefficient of variation (PCV) values for these characters were 28.68 and 21.83 respectively. Small differences between GCV and PCV were recorded for all the characters. Amylose content (0.66) recorded lesser influence with environment and highest was recorded with flag leaf width (12.33) in agronomic traits. Thus it can be concluded that the quality characters are less influenced than the agronomic traits by environmental factors. The heritability values for various yield and quality traits ranged from 27.61 (spikelet fertility) to 99.43 per cent (alkali spread value). The genetic advance values ranged from 0.19 (kernel breadth) to 70.33 (spikelets/panicle) for different yield and quality traits.

Keywords: Range; genetic advance; variability; heritability; rice

INTRODUCTION

Rice belongs to genus *Oryza* (2n=24) of family Poaceae. The genus *Oryza* includes 10 genomic types (AA, BB, CC, BBCC, CCDD, EE, FF, GG, HHJJ and HHKK) of which 22 are wild and only two

namely *Oryza sativa* and *O glaberrima* are cultivated (Watanabe 1997). *O sativa* consists of 2 major varietal groups of indicia (Hsein) and japonica (Kang) that have been recognized in China since ancient times. Subsequent studies using SSRs and SNPs distinguished five genetically defined

groups that roughly corresponded to the isozyme groups identified by Glaszmann (1987): indicia, aus, temperate japonica, tropical japonica and aromatic. Basmati rice has been cultivated at the foot of the Himalayan mountain ranges in India for thousands of years. Even archeological excavations at Ahar village near Udaipur railway station revealed remains (2000 BC-1600 BC) of long grained rice considered as possible ancestor of Basmati (Randhawa 1980). Rice is the most important staple food in Asia. More than 90 per cent of the world's rice is grown and consumed in Asia where 60 per cent of the world's population lives. Rice accounts for between 35-60 per cent of the caloric intake of three billion Asians (Guyer et al 1998). Yield improvement has been achieved in rice with the development of high yielding heterotic hybrids under commercial cultivation. However being the staple food of the population in India, improving its productivity has become of crucial importance (Subbaiah et al 2011). Basmati rice is a special type of aromatic rice known world over for its extra long grains and pleasant and distinct popcorn like aroma. Component 2-acetyle-l-pyrroline has been reported as an important flavor component of several aromatic varieties (Dhulappanavar et al 1975). Traditional Basmati rice is not only in demand in the domestic markets but is also seen in the menu of connoisseurs worldwide creating a billion-dollar export market. A paradigm shift in the rice breeding strategies from quantity centered approach to quality

oriented effort was inevitable since India has not only become self-sufficient in food grain production but also is the second largest exporter of quality rice in the world (Sreedhar et al 2005). Breaking of yield barriers in cereal crops including rice has become hard task to breeders. Plateauing of rice yield coupled with shrinking natural resources mainly land and water has caused major challenges to breeders for increasing rice production by at least 3 MT each year to maintain self-sufficiency in rice production (Siddig et al 1997). Therefore efforts to enhance rice productivity with keeping grain quality must receive top priority. Increasing rice production can be achieved by application of improved agronomic techniques and developing and adopting high yielding varieties (Thakare et al 2013). Selection is also effective when there is genetic variability among the individuals in a population. Hence insight into the magnitude of genetic variability present in a population is of paramount importance to a plant breeder for starting a judicious breeding programme (Vivek et al 2005). Genetic parameters such as genotypic coefficient of variation (GCV) and phenotypic coefficient of variation (PCV) are helpful tools in detecting the amount of variability present in the germplasm. Knowledge of heritability and genetic advance of the character indicate the scope for the improvement through selection. Heritability estimates along with genetic advance are normally more helpful in predicting the gain under selection.

MATERIAL and METHODS

A field experiment was conducted during Kharif 2013 at Agricultural Research Farm, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, UP. The seed material for the present investigation consisted of twenty four genotypes of rice and details are furnished in Table 1. The experiment was laid in randomized block design with three replications. Each replication consisted of twenty four genotypes randomized and replicated within each block. Twenty seven days old seedlings were transplanted 20 cm apart between rows and 15 cm within the rows. All the recommended packages of practices were followed along with necessary prophylactic plant protection measures to raise a good crop. Five representative plants in each replication were randomly selected to record observations on the quantitative characters under study. Observations were recorded on eleven yield attributes viz days to 50 per cent flowering, days to maturity, plant height (cm), flag leaf length (cm), flag leaf width (mm), main panicle length (cm), effective tiller per plant (number), spikelets per panicle (number), filled grains per panicle (number), spikelet fertility (%), 100-seed weight (g) and yield per plant (g) of five randomly selected plants in each entry under each replication. Observations were also recorded to study grain quality characters viz kernel length (mm), kernel breadth (mm), kernel length after cooking (mm), alkali spread value and amylose content. The data were compiled by taking mean value over randomly selected plants from all the replications and subjected to the statistical analysis such as analysis of variance (Panse and Sukhatme 1961), genotypic and phenotypic coefficient of variation (Burton 1952) and heritability (Lush 1940) and genetic advance as per cent of mean (Johnson et al 1955).

RESULTS AND DISCUSSION

Variability parameters

Greater variability in the initial breeding material ensures better chances of producing desired forms of a crop plant. Thus the primary objective of germplasm conservation is to collect and preserve the genetic variability in indigenous collection of crop species to make it available to present and future generations. The results of analysis of variance of the present investigation are presented in Table 2 and 3. A wide range of phenotypic coefficient of variation (PCV) was observed for traits ranging (Table 4) from 3.48 per cent (spikelet fertility) to 28.68 per cent (spikelets/panicle) among yield traits. For quality traits PCV ranged from 5.64 per cent (amylose content) to 21.83 per cent (alkali spread value). Genotypic coefficient of variation (GCV) had the range of 1.83 per cent (spikelet fertility) to 28.23 per cent (spikelets/panicle) among yield traits and 5.50 per cent (gelatinization temperature) to 21.77 per cent (alkali spread value)

Table 1. List of Basmati varieties under study

Variety	Parentage	Origin
Taroari Basmati	Pure line selection from local Basmati	Haryana
Basmati-370	Pure line selection from local agro commercial group	Punjab
Kasturi Basmati	Basmati 370/CR 88-17-1-5	DRR, Hyderabad
Sanowal Basmati	-	Jammu & Kashmir
Type-3	Selection from Dehradooni Basmati	Uttar Pradesh
Ranbir Basmati	Selection from Bas 370-90-95	Jammu & Kashmir
PB2517-2-51-1	-	IARI, New Delhi
Pusa Basmati-1	Pusa 167/Kernal local	IARI, New Delhi
HUBR 10-9	-	BHU
HPB-1S-97	Selection from Pusa Basmati-1	BHU
Pusa-44	IARI 5901-2/IR-8	IARI, New Delhi
Pusa Sugandh-3	-	IARI, New Delhi
Pusa Sugandh-5	Pusa 3A/Haryana Basmati	IARI, New Delhi
HUBR 2-1	HBR 92/Pusa Basmati-1/Kasturi	BHU
Vasumati	-	-
Mugadh Sugandh	-	-
Pusa Sugandh-2	-	-
Pusa 1460	Improved Pusa Basmati-1	IARI, New Delhi
Majhera Db-1	-	Uttrakhand
Majhera Db-2	-	Uttrakhand
Majhera Db-3	-	Uttrakhand
PRH-10	-	IARI, New Delhi
Mahi Sugandha	BK 79/Basmati 370	Rajasthan
Yamani	Selection from Taroari Basmati	-

among quality traits. The difference between PCV and GCV suggests that these characters are under major influence of genetic control and less due to environmental factors. High phenotypic variations were composed of high genotypic variations and less of environmental variations which indicated the presence of high genetic variability for different traits and less influence of

environment. Therefore selection on the basis of phenotype alone can be effective for the improvement of these traits. Similar results were observed by Pathak and Sharma (1996), Sarvanan and Senthil (1997), Rather et al (1998), Satya et al (1999), Shivani and Reddy (2000), Iftekharudduala et al (2001), Sao (2002), Hasib (2005) and Panwar (2005). Low estimates of PCV and GCV were observed

Table 2. Analysis of variance for eleven yield attributing characters in 24 genotypes of Basmati rice, Oryza sativa L

				*		
Grain yield/ 100-seed	weight (g)		0.002179	0.175052**	0.001388	
Grain yield	plant (g)		1.0757	36.665**	1.225405	
Spikelet	fertility (%)		2.4552	12.451022**	5.8069	
Spikelets/	panicle		15.8748	3649.2366**	39.0378	
Effective	tillers/plant panicle		0.1351	14.8201**	0.1934	
Main	panicle	length (cm)	2.7987	* 16.3530**	3.5684	
Plant height	(cm)		6.5588	827.8819**	4.2926	
Flag leaf	width	(mm)	0.739	7.3936**	2.1296	
Flag leaf	length	(cm)	2.146	83.041**	3.095	
Days to	maturity		15.264	148.854**	7.510	
Days to	20%	flowering	5.0139	142.4197**	3.1298	
df.			7	23	46	
Source			Replication 2 5.0139	Treatment	Error	

*Significant at P= 0.01, **Significant at P= 0.05

Table 3. Analysis of variance for quality characters in 24 genotypes of basmati rice, Oryza sativa L

2 0.005935 23 1.14852**
.00593 14852 01049

*Significant at P= 0.01, **Significant at P= 0.05

Table 4. General mean, range of variation, CD value and genotypic, phenotypic and error variance of different characters contributing to yield in Basmati rice, Oryza sativa L

Character	PVC (%)	GCV (%)	ECV (%)	Heritability	Genetic advance	dvance	GA (%) of mean	of mean
					2%	1%	2%	1%
Days to 50% flowering	7.06	6.84	1.77	93.68	13.59	17.41	13.63	17.47
Days to maturity	5.70	5.29	2.11	86.25	13.13	16.83	10.13	12.98
Flag leaf length (cm)	13.52	12.80	4.36	89.59	10.07	12.90	24.96	31.98
Flag leaf width (mm)	16.65	11.18	12.33	45.17	1.83	2.35	15.49	19.85
Plant height (cm)	13.66	13.55	1.69	98.46	33.87	43.40	27.71	35.51
Main panicle length (cm)	9.91	7.31	69.9	54.43	3.14	4.02	11.11	14.24
Effective tillers/plant	25.23	24.74	4.93	96.18	4.46	5.72	49.99	64.07
Spikelet/panicle	28.68	28.23	5.08	89.96	70.33	90.13	57.23	73.35
Spikelet fertility (%)	3.48	1.83	2.96	27.61	1.61	2.06	1.89	2.53
Grain yield/plant (g)	23.63	22.49	7.24	09.06	6.74	8.64	44.10	56.51
100-seed weight (g)	10.74	10.61	1.64	99.76	0.49	0.63	21.60	27.68
Kernel length (mm)	8.16	8.05	1.34	97.31	1.25	1.60	16.36	20.96
Kernel breadth (mm)	6.24	5.73	2.45	84.58	0.19	0.24	10.86	13.92
Kernel length after cooking	9.91	9.85	1.12	98.72	2.65	3.40	20.16	25.83
Alkali spread value	21.83	21.77	1.64	99.43	2.59	3.32	44.72	57.71
Gelatinization temperature	5.67	5.50	1.40	93.90	7.59	9.73	10.98	14.07
Amylose content	5.64	5.60	0.66	98.61	2.81	3.61	11.45	14.67

for the characters days to maturity and spikelets fertility per cent suggesting that the direct selection for these traits may not be rewarding. Similar results were also reported by Kaw et al (1999).

Heritability

The estimates of heritability act as predictive instrument in expressing the reliability of phenotypic value. Therefore high heritability helps in effective selection for a particular character. Heritability is classified as low (below 30%), medium (30-60%) and high (above 60%). The characters studied in the present investigation expressed low to high heritability estimates ranging from 27.61 to 99.43 per cent. High heritability (in broad sense) was noted (Table 4) for plant height (98.46%) and 100-seed weight (97.66%) and all yield traits except for spikelet fertility (27.61%) and moderate for main panicle length (54.43%) and flag leaf width (45.17%). For quality traits all characters showed high heritability. Similar findings were reported by Panwar et al (1997), Sarawgi et al (2000), Gannamani (2001) and Sao (2002) in various studies on heritability in Basmati rice. A character associating with high heritability may not necessarily give high genetic advance (Gandhi et al 1964). Johnson et al (1955) and Gandhi et al (1964) suggested that high heritability should be accompanied by high genetic advance to arrive at a more reliable conclusion. The breeder should be cautious in making selections based on heritability as it includes both additive and non-additive gene effects. Therefore heritability should be considered along with genetic advance for reliable assessment.

Genetic advance

The genetic advance is a useful indicator of the progress that can be expected as result of exercising selection on the pertinent population. Heritability in conjunction with genetic advance would give a more reliable index of selection value (Johnson et al 1955). The genetic advance (Table 4) values for various yield traits ranged from 0.49 (100-seed weight) to 70.33 (spikelets/panicle) and for quality traits from 0.19 (kernel breadth) to 7.59 (gelatinization temperature). The genetic advance for all quality traits was very low as percentage of mean was highest for spikelets/panicle (57.33%) and lowest for spikelet fertility (1.89%) among yield traits and for quality traits it was highest for alkali spread value (44.72%) and lowest for kernel breadth (10.86%) followed by gelatinization temperature (10.98%). These results are in agreement with the results obtained by Gyanendrapal et al (2011) for grain yield per plant, spikelets per panicle, effective tillers per plant and days to 50 per cent flowering; Krishna et al (2010) for number of total spikelets per panicle and number of filled spikelets per panicle; Kundu et al (2008) for grain yield per plant and 1000-grain weight in tall indica aman rice and Singh et al (2007) for days to 50 per cent flowering, grains per panicle and plant height. Other characters showed high heritability along with moderate or low genetic advance which can be improved by intermating superior genotypes of segregating population developed from combination breeding (Samadia 2005). These characters indicate the predominance of additive gene effects in their expression and would respond to selection effectively as they are least influenced by environment.

REFERENCES

- Burton GW 1952. Quantitative inheritance in grasses.

 Proceedings of 6th Grassland Congress Journal
 1: 277-281.
- Dhulappanavar CV, Hiremath SR and Sathyavathi GP 1975. Linkage between a basic gene for anthocyanin pigmentation and a complementary gene for purple spectrum in rice. Euphytica **24**: 633-638.
- Gandhi SM, Sangi AK, Nathwat KS and Bhatnagar MP 1964. Genotypic variability and correlated relating to grain yield and few other quantitative characters in Indian wheat. Indian Journal of Genetics 24: 1-8.
- Gannamani N 2001. Study of heterosis and combining ability by utilizing cytoplasmic genetic male sterility and fertility restoration system in rice (*Oryza sativa* L). MSc (Agric) thesis, IGAU, Raipur, CG, India.
- Glaszmann JC 1987. Isozymes and classification of Asian rice varieties. Theoretical and Applied Genetics **74:** 21-30.
- Guyer D, Tuttle A, Rouse S, Volrath S, Johnson M, Potter S, Gorlach J, Goff S, Crossland L and Ward E 1998. Activation of latent 171 transgenes in Arabidopsis using a hybrid transcription factor. Genetics **149**: 633-639.
- Gyanendrapal, Verma OP, Narendra Pratap, Kumar M, Chaudhary RK and Singh K 2011. Genetic

- variability, heritability and divergence studies in rice (*Oryza sativa* L) under sodic soil. Environment and Ecology **29:** 1597-1600.
- Hasib KM 2005. Genetic variablity. Interrelations and path analysis for panicle characters in scented rice. Crop Research **30:** 37-39.
- Iftekharuddaula KM, Hassan MS, Islam MJ, Badshah MA, Islam MR, and K. Akhter K 2001. Genetic evaluation and selection criteria of hybrid rice in irrigated ecosystem of Bangladesh. Pakistan Journal of Biological Sciences **4(7):** 790-792.
- Johnson HW, Robinson HF, and Comstock RE 1955. Estimation of genetic and environmental variability in soybean. Agronomy Journal 47: 314-318.
- Kaw RN, Aquino RC, Moon HP, Yae JD and Haq N 1999. Variability and interrelations in rice under cold stress environments. Oryza **36(1):** 1-4.
- Krishna T, Kavita A and Pushpalata T 2010. Genetic variability, heritability and genetic advance for quantitative traits in rice (*Oryza sativa* L) accession. Agricultural and Biological Research **26(1):** 13-19
- Kundu A, Senapati BK, Bakshi A and Mandal GS 2008. Genetic variability of panicle characters in tall *indica* aman rice. Oryza **45(4)**: 320-323.
- Lush JL 1940. Intra-rice correlation and the regression of offspring in rams as a method of estimating heritability of characters. Proceedings of American Society of Animal Production 33: 293-301
- Panse VG and Sukhatme PV 1961. Statistical methods for agricultural workers. 2nd edn, ICAR, New Delhi, India, pp 361.
- Panwar LL 2005. Genetic variability, heritability and genetic advance for panicle characters in transplanted rice. Research on Crops **6(3)**: 505-508
- Panwar RP, Ashvani SR, Sharma K, Arya KPS and Panwar A 1997. Genetic variability and interrelationship in rice (*Oryza sativa* L). Advances in Plant Sciences **10(1)**: 29-32.

- Pathak PK and Sharma KK 1996. Variability and correlation among physical quality characters of Joha rice of Assam. Journal of Agricultural Science Society of northeast India 9(1):18-22.
- Randhawa MS 1980. A history of agriculture in India. Vol 1. Beginning to 12th century, ICAR, New Delhi, India.
- Rather AG, Mir GN and Sheikh FA 1998. Genetic parameters for some quantitative traits in rice. Advances in Plant Sciences **19(2)**: 163-166.
- Samadia DK 2005. Genetic variability studies in Lasora (*Cordia myxa* Roxb). Indian Journal of Plant Genetic Resources **18(3)**: 236-240.
- Sao A 2002. Studies on combining ability and heterosis in F₁ rice hybrids using cytoplasmic male sterile lines. MSc (Agric) thesis, IGAU, Raipur, CG, India.
- Sarawgi AK, Rastogi NK and Soni DK 2000. Studies on some quality parameters of indigenous rice in Madhya Pradesh. Annuals of Agricultural Research **21(2)**: 258-261.
- Sarvanan R and Senthil N 1997. Genotypic and phenotypic variability, heritability and genetic advance in some important traits in rice. Madras Agricultural Journal **84(5):** 276-277.
- Satya A, Kandasamy G and J. Ramalingam J 1999. Heterosis in hybrid rice. Crop Research **18(2)**: 243-246.
- Shivani D and Reddy NSR 2000. Variability, heritability and genetic advance for

- morphological and physiological traits in certain rice hybrids. Oryza **37(3):** 231-233.
- Siddiq FA, Muralidharan K and Shobha RN 1997. Basmati rice. Directorate of Rice Research, Indian Council of Agricultural Research, New Delhi, India, pp 1-14.
- Singh M, Kumar K and Singh RP 2007. Study of coefficient of variation, heritability and genetic advance in hybrid rice. Oryza **44(2):** 160-162.
- Sreedhar S, Vanisri S, Kulkarni N and Ganesh M 2005. Gene effects for certain physical quality traits and grain yield in rice. Madras Agricultural Journal 92(4-6): 183-187.
- Subbaiah PV, Sekhar MR, Reddy KHP and Reddy NPE 2011. Variability and genetic parameters for grain yield and its components and kernel quality attributes in CMS based rice hybrids (*Oryza sativa* L). International Journal of Applied Biology and Pharmaceutical Technology **2(3):** 603-609.
- Thakare IS, Patel AL and Mehta AM 2013. Line x tester analysis using CMS system in rice (*Oryza sativa* L). The Bioscan **8(4):** 1379-1381.
- Vivek S, Singh S, Singh SK and Singh H 2005. Estimation of genetic variability, heritability and genetic advance in rice (*Oryza sativa* L). Agricultural Science Digest **25(3)**: 207-209.
- Watanabe Y 1997. Genomic constitution of genus *Oryza*. Food and Agriculture Policy Research Center, Tokyo, Japan.

Received: 27.6.2015 Accepted: 9.8.2015