Effect of sucrose and auxins on rooting of karonda cuttings, *Carissa carandas* L

DEEPIKA, K VANAJALATHA*, GIRISH SHARMA, DEEPIKA SINGH and GOPA MISHRA

Department of Fruit science, Dr YS Parmar University of Horticulture and Forestry Nauni, Solan 173230 Himachal Pradesh, India *Department of Fruit Science

Dr YSR Horticultural University, Rajendranagar, Hyderbad 500030 AP, India Email for correspondence: deepi.mystery@gmail.com

ABSTRACT

The experiment was conducted at Agricultural Research Institute, Rajendranagar, Hyderabad on vegetative propagation of karonda by cuttings. Karonda cuttings were treated with different concentrations of sucrose and auxins viz 2 and 4 per cent sucrose; 7000, 8000 and 9000 ppm IBA and 1000, 2000 and 3000 ppm NAA along with control (water dip) and the experiment was replicated thrice. Treated cuttings were planted in polybags, kept in shade and analyzed for various rooting parameters. The results indicated that IBA 8000 ppm recorded highest number of roots (10.89) which was at par with IBA 9000 ppm (10.44) followed by 4 per cent sucrose (9.99) and lowest was recorded in control (3.77). The maximum length of longest root per cutting was observed in case of IBA 8000 ppm (6.56 cm) which was at par with 9000 ppm IBA (6.35), 4 per cent sucrose (6.31 cm) and IBA 7000 ppm (6.12 cm) whereas control recorded only 2.57 cm root length. IBA 8000 ppm recorded highest rooting percentage (34.44%) and lowest (13.33 %) was observed in control.

Keywords: Propagation; auxins; sucrose; rooting; cuttings; IBA

INTRODUCTION

Karonda (*Carissa carandas* Linn syn *Carissa congesta* Wight) belonging to the family Apocynaceae is indigenous to India and is found wild in Bihar, West Bengal and south India and in commercial plantations in the Varanasi district of Uttar Pradesh (Banik et al 2012). It is an exceedingly hardy shrub that flourishes well on lands with high temperatures and wide

range of soils. The crop is grown for making beautiful juvenile hedge and because of the presence of axillary spines it can be a very good bio-fence (Sharma and Banyal 2010). The *C carandas* has been recognized in different systems of traditional medicine to cure various diseases. The unripe fruit is thermogenic, aphrodisiac, appetiser and antipyretic and is useful in vitiated conditions of Pitta and Kapha, hyperpiesia, diarrhoea, anorexia and

intermittent fevers. The ripe fruit is appetiser and antiscorbutic and is useful in burning sensation, skin diseases, scabies and pruritus. The roots are anthelmintic, stomachic and antiscorbutic and are useful in stomach disorders, intestinal worms, scabies and pruritus (Imran et al 2012). Under the changing world trade scenario it can be exploited on a commercial scale as a fruit for the processing industries. It is rich source of iron (39.10mg/100 g) and carbohydrates (67.10 mg/100 g edible portion). The raw and ripe fruits are used to prepare preserved products like jam, jelly, squash and pickle (Peter 2007). The vegetative propagation by cuttings has advantage in the maintenance of good agronomic characteristics, encouraging the production and multiplication of true to type plants. As very little information is available in the literature on propagation techniques of the karonda the present study was undertaken to raise karonda plants through treatment of the cuttings with various concentrations of sucrose and auxins.

MATERIAL and METHODS

The experiment was conducted during 2012 at Agricultural Research Institute, Rajendranagar, Hyderabad. The experiment was laid in RBD comprising of nine treatments viz $T_1(2\%$ sucrose), $T_2(4\%$ sucrose), $T_3(7000$ ppm IBA), $T_4(8000$ ppm IBA), $T_5(9000$ ppm IBA), $T_6(1000$ ppm NAA), $T_7(2000$ ppm NAA), $T_8(3000$ ppm NAA) and $T_9(\text{control/water dip})$ which were replicated thrice with 30 cuttings per

replication. Sucrose solutions of 2 and 4 per cent were prepared by dissolving 20 and 40 g of sucrose respectively in distilled water and the volume in each concentration was made up to 1000 ml with distilled water. The auxin concentrations of 7000, 8000 and 9000 ppm by dissolving 7.0, 8.0 and 9.0 g IBA respectively and 1000, 2000 and 3000 ppm by dissolving 1.0, 2.0 and 3.0 g NAA respectively were prepared in small quantity of ethyl alcohol and the volume in each concentration was made up to 1000 ml by adding distilled water.

Uniform, healthy and disease and pest free semi-hardwood cuttings of pencil size thickness were selected from mother plants from Agricultural Research Institute, Rajendranagar in August. From the selected branches 20 cm long cuttings having 4 to 5 nodes were taken from semi-hardwood portion of the branches. Black polythene bags of 15 x 22 cm size and 300 gauge thickness were filled with potting mixture of red soil, FYM and sand in a proportion of 1:1:1 along with 1 g of carbendazim per cubic meter of potting mixture as prophylactic measure to prevent the disease occurrence and were kept in shade condition. The basal 1.5-2.0 cm portion of the cuttings was treated with different treatments immediately after detaching from the plant and planted in polybags containing potting mixture.

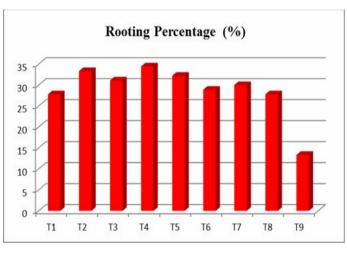
Weeding and watering was done at regular intervals as per need. The medium was drenched with carbandazim (0.15%)

at fortnightly interval to check disease incidence. The data on various root/rooting parameters were taken 2 months after the establishment of the cuttings. At the end of the experiment the cuttings were scored for number of roots per cutting, root length (cm) and rooting percentage (%). The data thus obtained were evaluated using the analysis of variance (ANOVA).

RESULTS and DISCUSSION

The observations given in Table 1 reveal that among the treatments IBA 8000 ppm recorded maximum number of roots (10.89) which was at par with IBA 9000 ppm (10.44) followed by 4 per cent sucrose (9.99). All the treatments recorded higher number of roots as compared to control (3.77). The increase in number of roots was probably due to hormonal effect and accumulation of other internal substances and their downward movement as reported in citrus species (Pandey et al 2003). These results are also in accordance with Bandopadhyay et al (1982) who found that IBA increased number of roots in Carissa species. Ribeiro et al (2010) also found highest number of roots with IBA 7500 ppm in *Prunus* species and indicated that auxin application could provoke an earlier or faster root growth. The effect of sucrose on increasing root length was also observed in karonda, mulberry and phalsa (Verma et al 1971) and olive (Wiesman and Lavee 1995). Generally carbohydrates supply energy and carbon skeleton for the synthesis

of organic compounds which are used for root formation.


Maximum length of longest root per cutting was observed in treatment (T₄) $(6.56 \,\mathrm{cm})$ which was at par with $T_{5}(6.35 \,\mathrm{cm})$ cm), T_2 (6.31 cm) and T_3 (6.12 cm) followed by T_7 (5.16 cm), T_6 (5.06 cm), T_{s} (4.84 cm) and T_{1} (4.82 cm) and were at par with each other. Control (T_o) recorded least root length (2.57 cm). The increase in length of roots in cuttings treated with auxins may be due to the enhanced hydrolysis of carbohydrates, accumulation of metabolites at the site of application, synthesis of new proteins, cell enlargement and cell division induced by the auxins (Singh et al 2011). The results are also in accordance with the findings of Misra and Jaiswal (1993) in karonda who observed longest root length with 10000 ppm IBA. On other hand the better response of sucrose might be due to the reason that carbohydrates are known as building blocks which act as necessary energy source for plant tissues. The availability of carbohydrates is often considered exclusively as an energetic requirement and carbon skeleton source to drive root development (Correa et al 2005).

The data pertaining to rooting percentage as influenced by sucrose and auxins were statistically significant and presented in Table 1 (Fig 1). IBA 8000 ppm showed higher rooting percentage (34.44)

Table1. Effect of sucrose and auxins on rooting of karonda cuttings at 60 days after planting

Treatment	# Roots/cutting	Length of longest root (cm) per cutting	Rooting percentage (%)
Γ ₁ - 2% Sucrose	6.00	4.82	27.78 (31.79)
Γ_2 - 4% Sucrose	9.99	6.31	33.33 (35.21)
Γ ₃ - 7000 ppm IBA	8.66	6.12	31.11 (33.89)
Γ ₄ - 8000 ppm IBA	10.89	6.56	34.44 (35.93)
Γ ₅ - 9000 ppm IBA	10.44	6.35	32.22 (34.57)
Γ ₆ - 1000 ppm NAA	7.77	5.06	28.89 (32.50)
Γ ₇ - 2000 ppm NAA	8.09	5.16	30.00 (33.21)
Γ ₈ - 3000 ppm NAA	7.00	4.84	27.78 (31.79)
Γ ₉ - control/water dip	3.77	2.57	13.33 (21.14)
Mean	8.06	5.31	28.76 (32.22)
SEm±	0.17	0.15	1.86 (1.28)
$CD_{0.05}$	0.53	0.46	5.64 (3.84)

The figures in parentheses are angular transformed values

T₁ - 2% Sucrose

T₂ - 4% Sucrose

T₃ - 7000 ppm IBA

 T_4 - 8000 ppm IBA

T₅ - 9000 ppm IBA

T₆ - 1000 ppm NAA

T₇ - 2000 ppm NAA

T₈ - 3000 ppm NAA

T₉ - control/ waterdip

Fig 1. Effect of sucrose and auxins on rooting percentage

compared to control (13.33). Similar results were obtained by Tyagi et al (1999) in Carissa. Other growth regulators and sucrose concentrations also showed more rooting percentage than control. The response of IBA could be that it is slowly degraded by the auxin degrading enzyme linked system (Sharma et al 2009). Likewise Weaver (1972) suggested that since IBA translocates poorly it is retained near the site of application and is therefore very effective. The application of IBA may have an indirect influence by enhancing the speed of transformation and movement of sugar to the base of cuttings and consequently rooting as mentioned by Torkashvanda and Shadparvar (2012) in hibiscus. On other hand sucrose treatment was also effective in karonda rooting. The rooting in woody cuttings is chiefly influenced by the concentration of carbohydrate. Sucrose is good source of carbohydrate which gives direct energy to the cuttings. High sugar level affects rooting by reducing the level of nitrogen which is essential for rooting process (Yeboah et al 2009). This may be the reason due to which sucrose produced higher rooting percentage compared to control.

CONCLUSION

As the successful rooting of cuttings was determined both by number of roots formed and by root elongation and growth it shows that IBA 8000 ppm was best in rooting performance of karonda cuttings

followed by IBA 9000 ppm and 4 per cent sucrose compared to control. The sucrose treated cuttings gave almost equal response as IBA. Hence IBA and sucrose could be recommended for treating karonda cuttings.

REFERENCES

- Bandopadhyay DP, Nath N, Pandey HS and Yadav LP 1982. Effect of growth regulators in propagation of *Carissa* species by stem cuttings. Indian Agriculture **26(1)**: 57-63.
- Banik BC, Ghosh SN and Singh SR 2012. Research and development in karonda (*Carissa carandas*), a semi wild fruit in India. Acta Horticulturae **948**: 61-69.
- Correa LDR, Paim DC, Schwambach J and Fett-Neto AG 2005. Carbohydrates as regulatory factors on the rooting of *Eucalyptus saligna* Smith and *Eucalyptus globulus* Labil. Plant Growth Regulation **45:** 63-73.
- Imran MA, Begum G, Sujatha K and Mallaiah B 2012. Effect of adenine sulphate (ads) with cytokinins on multiple shoot production in *Carissa carandas*. International Journal of Pharma and Bio-Sciences **3(1)**: 473-480.
- Misra KK and Jaiswal HR 1993. A study on the effect of indolbutyric acid on rooting of stool layers of karonda (*Carissa carandas* L). Annals of Agricultural Research **14(2)**: 235-236.
- Pandey A, Patel RM, Agrawal S and Sharma HG 2003. Effect of plant growth regulator on rooting and survival percentage of different species of citrus cuttings. The Orissa Journal of Horticulture **31:** 42-44.
- Peter KV 2007. Underutilized and underexploited horticultural crops. New Indian Publishing Agency, New Delhi, India 2: 313-315.
- Ribeiro MM, Collado LM and Antunes MA 2010. The influence of indol-3-butyric-acid in *Prunus laurocerasus* vegetative propagation. Acta Horticulturae **885**: 277-282.

Deepika et al

- Sharma N, Anand R and Kumar D 2009. Standardization of pomegranate (*Punica garanatum* L) propagation through cuttings. Biological Forum– an International Journal **1(1)**: 75-80.
- Sharma SK and Banyal SK 2010. Rehabilitation of marginal lands through karonda cultivation. Intensive Agriculture, Oct-Dec 2010, pp 6-12.
- Singh B, Singh, S and Singh G 2011. Influence of planting time and IBA on rooting and growth of pomegranate (*Punica granatum*) 'Ganesh' cuttings. Acta Horticulturae **890:** 183-188.
- Torkashvanda AM and Shadparvar V 2012. Rooting in *Hibiscus rosa- sinensis* (yellow double hybrid) by indole butyric acid and rooting substrates. International Journal of Plant, Animal and Environmental Sciences **2(2)**: 194-197.
- Tyagi S, Misra KK and Jaiswal HR 1999. Effect of plant growth regulators in rooting of softwood

- stem cuttings of *carissa* under mist. Scientific Horticulture **6:** 37-43.
- Verma AN, Shrivastava DC, Pujan MM, Misra HR and Sharma RK 1971. Rooting of karonda, mulberry and phalsa cuttings affected by sugar alone and with plant growth regulators. The Panjab Horticultural Journal 11: 57-60.
- Weaver RJ 1972. Plant growth substance in agriculture. WH Freeman and Company, San Francisco, pp 128.
- Wiesman Z and Lavee S 1995. Relationship of carbohydrate sources and indol-3-butyric acid in olive cuttings. Australian Journal of Plant Physiology 22: 811-816.
- Yeboah J, Lowor ST and Amoah FM 2009. The rooting performance of shea (*Vitellaria paradoxagaertn*) stem cuttings as influenced by wood type, sucrose and rooting hormone. Scientific Research and Essay **4(5)**: 521-525.

Received: 10.3.2015 Accepted: 24.7.2015