Effect of different levels of phosphorus and sulphur on yield and quality of green gram (*Vigna radiata* L) under teak (*Tectona grandis* L)-based agroforestry system

JAIVEER SINGH DHEWA, SAMEER DANIEL and SULOCHANA*

Department of Agroforestry, Sam Higginbottom University of Agriculture,
Technology and Sciences, Allahabad 211007 Uttar Pradesh, India
*Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology
Udaipur 313001 Rajasthan, India

Email for correspondence: jaiveerd01@gmail.com

© Society for Advancement of Human and Nature 2017

Received: 9.1.2017/Accepted: 22.5. 2017

ABSTRACT

Application of phosphorus and elemental sulphur is an important tool to obtain high yield of green gram (*Vigna radiata* L) under teak-based agroforestry system in Kharif season. The overall goal of the present experiment was to assess the impact of phosphorus and elemental sulphur application on green gram yield under teak-based agroforestry system in eastern Uttar Pradesh. Green gram was grown in an alley cropping system which integrated trees with grain crop. Application of phosphorus at 65 kg/ha gave the best results in terms of green gram yield attributes like pod length, number of pods per plant, number of grains per pod, test weight, grain yield, haulm yield, biological yield, harvest index and protein content in grain and haulm, protein yield in grain and haulm and total protein yield as compared to the phosphorus at 45 and 25 kg/ha under both conditions of open and teak-based agroforestry system. Application of sulphur (50 kg/ha) also gave higher yield like pod length, number of pods per plant, number of grains per pod, test weight, grain yield, haulm yield, biological yield, harvest index and protein content in grain and haulm, protein yield by grain and haulm and total protein yield as compared to sulphur applied @ 35 and 20 kg/ha in open and teak-based agroforestry system.

Keywords: Phosphorus; sulphur; teak; agroforestry system; yield,; quality; green gram

INTRODUCTION

India is the largest producer (25% of global production), consumer (27% of world consumption) and importer (14%) of pulses in the world. Pulses account for around 20 per cent of the area under food grains and contribute around 7-10 per cent of the total food grain production in the country (Mohanty and Satyasai 2015).

Green gram (*Vigna radiata* L) is cultivated in tropical and subtropical regions of India as a summer (Kharif) rainfed crop (Anila Kumar et al 2010). It contains 24.3 per cent protein and is fairly rich in carbohydrates and also contains small amount of riboflavin and thiamine. It is also rich in phosphorus and iron (Patel et al 2013). It also contains high quality of lysine (4600 mg/g N) and tryptophan (60 mg/g N).

The sprouted seeds of mung bean are rich in ascorbic acid (vitamin C), riboflavin and thiamine (Choudhary 2010)

Alley cropping is a type of agroforestry system in which seasonal crops are grown in between the rows of trees. There are several types of alley cropping systems depending upon different associations of trees and crops (Torquebiau 2000). Teak (*Tectona grandis* L) is the most important timber tree in India especially for furniture making. It can be grown in all parts of the country except dry western zone. Mostly it prefers a deep, fertile and well-drained deep alluvial soil. The sandy soil is considered to be the best soil texture for this tree. It fails to grow in the soil with pH below 6.5.

The phosphorus requirements of plants vary depending upon the nutrient content of the soil (Bose

and Som 1986). Phosphorus shortage restricts the plant growth and plant remains immature. Common diagnostic properties of phosphorus deficiency are a darker green leaf colour due to higher chlorophyll content (often with red pigments from anthocyanins), reduced leaf extension and a higher root-shoot ratio since root growth is much less affected by phosphorus deficiency than shoot growth (Wild 1988, Marschner 1995). A high phosphorus supply is needed for nodulation of legumes and hence phosphorus deficiency can also seriously reduce biological nitrogen fixation (Marschner 1995). Agroforestry techniques can help to overcome some of these constraints (Buresh 1999).

The deficiency of S, one of the foremost important nutrients after N, P and K (McGrath et al 1996, Walker and Dawson 2003) is a major constraint to sustainable production of oilseed crops in many parts of the world including India (Saha et al 2001, Biswas et al 2003, Grant et al 2003, Malhi and Gill 2007). About 41 per cent of soils in India are deficient in S and yield of oilseed crops is adversely affected (Lakkineni and Abrol 1992). Deficiency of S adversely affects flowering, fruiting and cupping of leaves, causes reddening of stems, petioles and stunted growth of oilseed crops (Salwa et al 2010, Saha et al 2001). The requirement of S is higher in oilseed crops due to its critical role in synthesis of oil and production of bold grains (Havlin et al 1999, Malhi and Gill 2007). Therefore the sustainable production of oilseed crops (ie sesame) in acidic soils requires knowledge of the site-specific rates of liming and S fertilization (Tiwari et al 2000, Singh et al 2011).

Research information on the conjunctive rate of P and S application under site-specific conditions of growing green gram are not widely available especially in an alley cropping system where pulse crops are grown in between the rows of fruit trees. Yet this information is necessary to effectively sustain the productivity of the green gram while also alleviating S deficiency. Therefore the present studies were conducted to assess the impact of application of P and S on yield and quality of green gram under teak (*Tectona grandis* L)-based agroforestry system and open condition of Allahabad, Uttar Pradesh.

MATERIAL and METHODS

Experimental site

The field experiment was conducted during Kharif season of 2014 and 2015 at the forest nursery

of School of Forestry and Environment, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh.

Soil analysis

Soil samples were collected randomly from 0-30 cm depth within each 10 m interval at the three physiographic positions of the experimental field prior to sowing and after harvest of the crop. Soil samples were air-dried, gently ground and passed through 2 mm sieve. The plow layer contained 245.08 kg/ha alkaline permanganate oxidizable N (Subbiah and Asija 1956), 25.30 kg/ha of available P extracted by 0.5 M NaHCO, at pH 8.5 (Olsen and Sommers 1982), 128.60 kg/ha of available K as determined by the flame photometer method with 1N KCl and titrating sued 0.05N NaOH (McLean 1982), 13 kg/ha of S as determined by the turbidity method (Chesnin and Yein 1950), soil organic carbon (SOC) concentration of 0.31 per cent and converted to SOC stock (Anon 2000), soil pH (7.45) as determined in 1:2 (soil: water) extract of the soil using deionized water and electrical conductivity (EC) 0.034 dS/m at 25°C in 1:2 (soil:water) suspension using 0.01M potassium chloride solution (van Reeuwijk 2002).

Treatment details and field layout

The field experiment was laid out in factorial randomized block design with three replications. The experiment comprised 9 treatment combinations consisting of three levels of phosphorus (25, 45 and 65 kg/ha) and S (20, 35 and 50 kg/ha). Green gram variety Samrat was grown within the alleys of 12 year old teak (Tectona graindis L) plantation. The teak trees were planted at a spacing of 9 x 3 m. Green gram was sown at 30 cm between the rows and 10 cm spacing within the plants between the teak trees. There were a total of 10 rows of green gram within the alley of two rows of teak. The gross and net plot size was 3 x 4 m and 2.10 x 3 m respectively. The distance between the teak and green gram row was 1 m on both sides. The crop was also grown in open condition with same spacing and gross or net plot size.

Cultural practices and observations

Phosphorus and elemental sulphur were applied as per treatments 30 and 15 days before sowing respectively. Phosphorus (25, 45 and 65 kg/ha) and S (20, 35 and 50 kg/ha) were drilled at a depth of 5 cm as single super phosphate and elemental sulphur respectively. The fertilizer was drilled in furrows at 5 cm below the seedling depth before sowing. Green

gram was seeded at the recommended seed rate of 15 kg /ha and at 2.5 cm soil depth. The seeds were covered with the soil from the other side of furrow. Fifteen days after sowing (DAS) thinning was done to maintain the desired plant population. Periodic hand weeding was done as and when needed. Green gram was harvested from each plot when 80 per cent of pods turned brownish-yellow and started drying. The border rows were harvested first and kept aside and the yield was measured by manually harvesting the net plot area. Grain and stalk yields were recorded after proper sun-drying and tagged in bundles. Each bundle was weighed, threshed and cleaned separately and seed yield per plot was calculated from net plot. Grain and stock yields were recorded separately. Moisture in the seed was 18 per cent at the time of harvesting. Randomly selected ten plants were taken from each plot for agronomic observations of yield and yield parameters. Test weight of 1000 seeds from each plot was recorded. Protein content in seed was estimated by multiplying the N content (Nelson and Sommers 1980) in seed with the factor 6.25 as suggested by (Anon 1990). Protein yield was calculated by multiplying the estimated protein with the seed yield.

The Microsoft Excel was used as a statistical software package for analyzing the data for the analysis of variance and other statistical parameters (McCullough and Wilson 2005). Critical difference (CD) values at 5 per cent level of significance were used to determine the significance of differences between mean values of treatments. The standard level of significance used to justify a claim of a statistically significant effect was 0.05 (Draper and smith 1998).

RESULTS and DISCUSSION

Effect of phosphorus

Significantly higher pooled values of yield and quality parameters in 2014 and 2015 under shade (teak) were obtained with the phosphorus application of 65 kg/ha in comparison to 45 and 25 kg/ha. In three levels of P the pod length was 7.81, 6.70 and 5.13 cm, number of pods/plant 22.39, 19.22 and 14.69, number of grains/pod 6.47, 5.57 and 4.26, test weight 26.10, 22.34 and 17.09 g, grain yield 606.6, 495.2 and 369.1 kg/ha, haulm yield 1630.57, 1409.07 and 1111.99 kg/ha, biological yield 2237.23, 1904.23 and 1481.16 kg/ha and harvest index 27.28, 26.12 and 24.64 per cent respectively (Table1). Under quality parameters (Table 2) protein content in grains was 14.92, 12.49 and 9.54 per cent, protein content in haulm 8.68, 7.41 and 5.66 per cent,

total protein content 23.56, 19.91 and 15.22 per cent, protein yield by grain 104.9, 80.66 and 46.64 kg/ha, protein yield by haulm 143.0, 107.2 and 65.2 kg/ha and total protein yield 234.23, 170.24 and 101.49 kg/ha in 65, 45 and 25 kg/ha P respectively.

The data show that significantly higher pooled values of yield and quality under open condition were obtained with the phosphorus application @ 65 kg/ha in comparison to 45 kg/ha and 25 kg/ha where the pod length was 10.39, 8.89 and 6.78 cm, number of pods/ plant 27.43, 23.48 and 17.94, number of grains/pod 11.03, 9.42 and 7.20, test weight (39.06, 33.36 and 25.53 g, grain yield 1124.4, 956.28 and 731.09 kg/ha, haulm yield 3587.22, 3087.66 and 2394.31 kg/ha, biological yield 4711.68, 4043.93 and 3125.42 kg/ha and harvest index 23.91, 23.70 and 23.42 per cent respectively (Table 1). Under quality parameters (Table 2) the protein content in grains was 23.09, 19.73 and 15.10 per cent, protein content in haulm 10.13, 8.66 and 6.63 per cent, total protein content 33.22, 28.40 and 21.73 per cent, protein yield by grain 262.59, 193.39 and 113.49 kg/ha, protein yield by haulm 368.5, 275.3 and 163.6 kg/ha and total protein yield of green gram 631.1, 468.8 and 277.1 kg/ha in 65, 45 and 25 kg/ha P respectively. Similar results were found by Prasad et al (2014), Patil et al (2011), Parvez et al (2013), Dhewa et al (2015) and Dhewa et al (2017). In general the overall increase in growth of summer mung bean with P application can be ascribed to its pivotal role in several physiological and biochemical processes necessary for crop growth and development. Among nutrients P is the most important for exploiting genetic potentials of the crop/variety (Havlin et al 2008). Reduced plant height in agroforestry system compared to sole crop could be attributed to reduction in cell turgidity as a result of stress imposed due to competition for water which led to decrease in cell elongation and decreased plant height. The observations of the present studies are in line with those of Kramer (1959) who observed reduced cell elongation due to reduced cell turgidity which decreased not only the size of the plants but also the yield.

Effect of sulphur

Significantly higher pooled values of yield and quality parameters in 2014 and 2015 under shade (teak) were obtained with the sulphur application of 50 kg/ha in comparison to sulphur 35 and 20 kg/ha as the pod length was 6.93, 6.49and 6.22 cm, number of pods/plant 19.89, 18.58 and 17.83, number of grains/pod 5.77, 5.37 and 5.16, test weight 23.16, 21.62 and 20.76, grain

Table 1. Effect of phosphorus (P) and sulphur (S) levels on yield and yield attributes of Kharif green gram (pooled data of 2014 and 2015)

Treatment							Yie	ld and yie	Yield and yield attributes of green gram	f green gra	am					
	1	Under shade	le	1	Under open		C	Under shade	le		Under open	_	Under shade	nade	Under open	nedc
	PL	NP	NG	PL	NP	NG	TW	GY	НҮ	TW	GY	НУ	BY	 ⊞	BY	HI
P (kg/ha)																
25	5.13	14.69	4.26	8.78	17.94	7.20	17.09	369.1	11111.99	25.53	731.09	2394.31	1481.16	24.64	3125.42	23.42
45	6.70	19.22	5.57	8.89	23.48	9.42	22.34	495.2	1409.07	33.36	956.28	3087.66	1904.23	26.12	4043.93	23.70
65	7.81	22.39	6.47	10.39	27.43	11.03	26.10	9.909	1630.57	39.06	1124.4	3587.22	2,237.23	27.28	4711.68	23.91
$SEm\pm$	0.107	0.319	0.089	0.15	0.38	0.16	0.37	6.22	44.61	0.54	13.85	50.32	48.15	0.558	63.46	0.099
$\mathrm{CD}_{0.05}$	0.325	0.965	0.268	0.44	1.16	0.47	1.11	18.81	134.89	1.63	41.89	152.14	145.60	1.69	191.88	0.301
S (kg/ha)																
20	6.22	17.83	5.16	8.24	21.80	8.76	20.76	446.3	1309.16	31.00	887.9	2900.48	1755.49	25.26	3788.40	21.42
35	6.49	18.58	5.37	8.60	22.72	9.13	21.62	483.6	1382.60	32.33	925.3	2987.10	1866.21	26.09	3912.42	22.70
50	6.93	19.89	5.77	9.21	24.33	9.77	23.16	541.1	1459.87	34.61	9.866	3181.61	2000.92	26.69	4180.21	23.20
$SEm\pm$	0.107	0.319	0.089	0.15	0.38	0.16	0.37	6.22	44.61	0.54	13.85	50.32	48.15	0.558	63.46	0.099
$\mathrm{CD}_{0.05}$	0.325	0.965	0.268	0.44	1.16	0.47	1.11	18.81	NS	1.63	41.89	152.14	145.60	NS	191.88	0.301

PL= Pod length (cm), NP= Number of pods/plant, NG= Number of grains/pod, TW= Test weight (g), GY= Grain yield (kg/ha), HY= Haulm yield (kg/ha), BY= Biological yield (kg/ha), HI= Harvest index, NS= Non-significant

Table 2. Effect of phosphorus (P) and sulphur (S) levels on protein content (%) and protein yield (kg/ha) of Kharif green gram (pooled data 2014 and 2015)

Treatment		Protein content (%)	tent (%)			Protein yield (kg/ha)	ld (kg/ha)		Total prot	ein content (Fotal protein content (%) and yield (kg/ha)	kg/ha)
	Unde	Inder shade	Unc	Inder open	Unde	Jnder shade	Under open	oben	Under	Under shade	Under open	nedc
	Grain	Haulm	Grain	Haulm	Grain	Haulm	Grain	Haulm	Content	Yield	Content	Yield
P (kg/ha)												
25	9.54	5.66	15.10	6.63	46.64	65.2	113.49	163.6	15.22	101.49	21.73	277.1
45	12.49	7.41	19.73	99.8	99.08	107.2	193.39	275.3	19.91	170.24	28.40	468.8
65	14.92	89.8	23.09	10.13	104.9	143.0	262.59	368.5	23.56	234.23	33.22	631.1
SEm±	0.207	0.124	0.32	0.141	3.73	4.87	6.679	10.10	0.288	6.02	0.46	16.73
$CD_{0.05}$	0.627	5.07	0.967	0.426	11.28	14.73	20.195	30.542	0.871	18.19	1.392	50.59
S (kg/ha)												
20	11.61	88.9	18.33	8.06	70.03	95.24	172.65	247.8	18.48	150.2	26.39	420.4
35	12.08	7.17	19.11	8.39	74.7	104.2	184.21	261.8	19.24	164.7	27.51	446.0
50	13.27	7.70	20.48	8.98	87.43	116.0	212.61	297.9	20.97	191.0	29.46	510.5
SEm±	0.207	0.124	0.32	0.141	3.73	4.87	6.679	10.10	0.288	6.02	0.46	16.73
$CD_{o.o.}$	0.627	5.07	0.967	0.426	11.28	14.73	20.195	30.542	0.871	18.19	1.392	50.59

yield 541.1, 483.6 and 446.3 kg/ha, haulm yield 1459.87, 1382.60 and 1309.16 kg/ha, biological yield 2000.92, 1866.21 and 1755.49 kg/ha and harvest index 26.69, 26.09 and 25.26 per cent respectively (Table 1). Under quality parameters (Table 2) protein content in grains was 14.92, 12.49 and 9.54 per cent, protein content in haulm 8.68, 7.41 and 5.66 per cent, total protein content 23.56, 19.91 and 15.22 per cent, protein yield by grain 104.9, 80.66 and 46.64 kg/ha, protein yield by haulm 143.0, 107.2 and 65.2 kg/ha and total protein yield of green gram 234.23, 170.24 and 101.49 kg/ha respectively in three levels of S.

The data show that significantly higher pooled values of yield and quality under open condition were obtained with the sulphur application @ 50 kg/ha in comparison to 35 and 20 kg/ha where pod length was 9.21, 8.60 and 8.24 cm, number of pods/plant 24.33, 22.72 and 21.80, number of grains/pod 9.77, 9.13 and 8.76, test weight 34.61, 32.33 and 31.00, grain yield 998.6, 925.3 and 887.9 kg/ha, haulm yield 3181.61, 2987.10 and 2900.48 kg/ha, biological yield 4180.21, 3912.42 and 3788.40 kg/ha and harvest index 23.20 vs 22.70 and 21.42 per cent respectively (Table 1). Under quality parameters (Table 2) protein content in grain was 23.09, 19.73 and 15.10 per cent, protein content in haulm 10.13, 8.66 and 6.63 per cent, total protein content 33.22, 28.40 and 21.73 per cent, protein yield by grain 262.59, 193.39 and 113.49 kg/ha, protein yield by haulm 368.5, 275.3 and 163.6 kg/ha and total protein yield of green gram 631.1, 468.8 and 277.1 kg/ha respectively. The positive role of S is in formation of sulphalhydral group helping in building disulfide bond between the cysteine residues via oxidation and thus maintaining the protein structure (Leustek and Saito 1999).

REFERENCES

- Anila Kumar KR, Pal A, Khanum F and Bawa AS 2010. Nutritional, medicinal and industrial uses of sesame (*Sesamum indicum* L) seeds- an overview. Agriculturae Conspectus Scientificus **75(4)**: 159-168.
- Anonymous 1990.Official methods of analysis of association of analytical chemists.12thedn, Association of Analytical Chemists, Washington, DC.
- Anonymous 2000. Standard test methods for moisture, ash and organic matter of peat and other organic soils. Method D 2974-00, American Society for Testing and Materials, West Conshohocken, PA.

- Biswas H, Rattan RK, Datta SP and Singh AK 2003. Adsorption and translocation of sulfur in some tropical acid soils. Journal of Plant Nutrition and Soil Science **166:** 519-524.
- Bose TK and Som MG 1986. Vegetable crops in India. Naya Prokash, Calcutta, West Bengal, India, 102p.
- Buresh RJ 1999. Phosphorus management in tropical agroforestry: current knowledge and research challenges. Agroforestry Forum **9(4):** 61-66.
- Choudhary HR 2010. Integrated nutrient management in mungbean, *Vignaradiata* (L) Wilczek. MSc (Agric) thesis, Rajastan Agricultural University, Bikaner, Rajasthan, India.
- Chesnin L and Yein CH 1950. Turbid metric determination of available sulfur. Proceedings, Soil Science Society of America **15:** 149-51.
- Dhewa JS, Singh Y, Sulochana and Singh P 2017. Effect of phosphorus levels and PSB on productivity and nutrient uptake of green gram, *Vigna radiata* (L) Wilczek under custard apple (*Annona squamosa*) based on agri-horti system. Environment and Ecology **35(1A):** 358-362.
- Dhewa JS, Singh Y, Sulochana and Bajia R 2015. Effect of phosphorus levels and PSB on growth indices and yield of green gram, *Vigna radiata* (L) Wilczek under custard apple (*Annona squamosa*) based on agri-horti system. The Bioscan **10(3):** 1317-1320.
- Draper NR and Smith H 1998. Applied regression analysis. 3rd edn, John Wiley and Sons, New York, 736p
- Grant CA, Clayton GW and Johnston AM 2003. Sulphur fertilizer and tillage effects on canola seed quality in the black soil zone of western Canada. Canadian Journal of Plant Science **83(4):** 745-58.
- Havlin JL, Beaton JD, Tisdale SL and Nelson WR 1999. Soil fertility and fertilizers- an introduction to nutrient management. 6th edn, Prentice Hall, New Jersey.
- Havlin JL, Tisdale SL, Nelson WL and Beaton JD 2008. Soil fertility and fertilizers- an introduction to nutrient management.8th edn, Prentice-Hall, Inc, New Jersey.
- Kramer PJ 1959. The role of water in physiology of plants. Advances in Agronomy 11: 51-70.
- Lakkineni KC and Abrol YP 1992. Sulfur requirement of rapeseed-mustard, groundnut and wheat: a comparative assessment. Journal of Agronomy and Crop Science **169(4):** 281-285.
- Leustek T and Saito K 1999. Sulfate transport and assimilation in plants. Plant Physiology **120(3)**: 637-644.

- Malhi SS and Gill KS 2007. Interactive effects of N and S fertilizers on canola yield and seed quality on S-deficient gray luvisol soils in northeastern Saskatchewan. Canadian Journal of Plant Science 87(2): 211-222.
- Marschner H 1995. Mineral nutrition of higher plants. 2nd edn, Academic Press, London, 889p.
- McCullough BD and Wilson B 2005. On the accuracy of statistical procedures in Microsoft Excel 2003. Computational Statistics and Data Analysis 49(4): 1244-1252
- McGrath PJ, Nunes EV, Stewart JW, Goldman D, Agosti V, Ocepek-Welikson K and Quitkin FM 1996. Imipramine treatment of alcoholics with primary depression: a placebo-controlled clinical trial. Archives of General Psychiatry **53(3)**: 232-240.
- McLean EO 1982. Soil pH and lime requirement. In: Methods of soil analysis (RH Miller and DR Keeney eds), Part 2, Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America, pp 199-224.
- Mohanty S and Satyasai KJ 2015. Feeling the pulse- Indian pulses sector. Rural Pulse, E-book, Issue X, Department of Economic Analysis and Research, NABARD, Mumbai, Maharashtra, India.
- Nelson DW and Sommers LL 1980. Total nitrogen analysis of soil and plant tissues. Journal-Association of Official Analytical Chemists **63:** 770-778.
- Olsen SR and Sommers LE 1982. Phosphorus. In: Methods of soil analysis (RH Miller and DR Keeney eds), Part 2, Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America, pp 421-422.
- Parvez MT, Paul SK and Sarkar MAR 2013. Yield and yield contributing characters of mungbean as affected by variety and level of phosphorus. Journal of Agroforesty and Environment **7(1)**: 115-118.
- Patel HR, Patel HF, Maheriya VD and Dodia IN 2013. Response of Kharif green gram (*Vigna radita* L Wilczek) to sulphur and phosphorus fertilization with and without biofertilizer application. The Bioscan **8(1)**: 149-152.
- Patil HY, Patil SJ, Mutanal SM, Chetti MB and Aravindkumar BN 2011. Productivity of legumes as influenced by

- morphological characters in teak-based agroforestry system. Karnataka Journal of Agricultural Sciences **24(4)**: 483-486.
- Patil SC, Jagtap DN and Bhale VM 2011. Effect of phosphorus and sulphur on growth and yield of moongbean. International Journal of Agricultural Sciences 7(2): 348-351.
- Prasad SK, Singh MK and Singh J 2014. Response of rhizobium inoculation and phosphorus levels on mungbean (*Vigna radiata*) under guava-based agrihorti system. The Bioscan **9(2)**: 557-560.
- Saha JK, Singh AB, Ganeshamurthy AN, Kundu S and Biswas AK 2001. Sulfur accumulation in vertisols due to continuous gypsum application for six years and its effect on yield and biochemical constituents of soybean, *Glycine max* (L) Merrill. Journal of Plant Nutrition and Soil Science **164(3)**: 317-320.
- Salwa AIE, Mohsen MA and Behary SS 2010. Amelioration productivity of sandy soil by using amino acids, sulphur and micronutrients for sesame production. Journal of American Science 6(11): 250-257.
- Singh BP, Cowie AL and Chan KY 2011. Soil health and climate change. Vol 29, Soil Biology Series, Springer, Berlin/Heidelberg.
- Subbiah BV and Asija GL 1956. A rapid procedure for the estimation of available nitrogen in soils. Current Science **25(8):** 259-260.
- Tiwari RC, Namdeo K and Girisha KN 2000. Effect of nitrogen and sulphur on growth, yield and quality of sesame varieties. Research on Crops 1: 163-167.
- Torquebiau E 2000. A renewed perspective on agroforestry concepts and classification. Comptes rendus de l'Académie des Sciences/Life Sciences 323: 1009-1017.
- van Reeuwijk LP 2002. Procedures for soil analysis, 6th edn, Technical Paper 9, ISRIC, Wageningen.
- Walker K and Dawson C 2003. Sulphur fertilizer recommendations. Fertilizers Fertilization 3: 71-89.
- Wild A 1988. Plant nutrients in soil: phosphate. In: Soil conditions and plant growth (EJ Russell ed), Longman Scientific and Tchnical, Harlow, pp 695-774.