Prospects of *Mentha spicata* under mid-hill conditions of Himachal Pradesh

VINOD KUMAR, MEENU SOOD and ARUNA MEHTA

Department of Forest Products
Dr YS Parmar University of Horticulture and Forestry
Nauni, Solan 173230 Himachal Pradesh, India

Email for correspondence: dilman.vinod@gmail.com

ABSTRACT

A field trial was conducted at the research farm and laboratory of the Department of Forest Products, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP to study the performance of *Mentha spicata* under varying dates of planting, row spacings and fertilizers. The results revealed that transplanting time had significant effect on growth and yield of the species. The crop transplanted on 15 February gave maximum values for plant height (36.82 cm), herb yield (173.15 q/ha), oil content (0.24%) and oil yield (50.89 kg/ha) as compared to January and March transplanted crop. Among different spacings 30 x 45 cm spacing registered maximum plant height (38.26 cm), herbage yield (188.30 q/ha), oil content (0.25%) and oil yield (48.72 kg/ha). Use of NPK registered maximum plant height (43.39 cm), herb yield (271.96 q/ha), oil content (0.42%) and oil yield (81.38 kg/ha) followed by application of vermicompost, FYM and *Azotobacter*. Use of optimum dose of NPK gave maximum cost/benefit ratio for this species.

Keywords: *Mentha spicata*; essential oil; planting time; row spacing; organic fertilizers

INTRODUCTION

Mentha a small genus of aromatic herb belongs to Labiateae (Lamiaceae) family. Mentha spicata popularly known as spearmint is considered industrial crop as it is a source of essential oil enriched in certain monoterpenes like carvol, dihydrocarveole, dihydrocarveylacetatae, menthol, menthone, caryophyllene, terpineol and cubebene which is commercially exploited in food, flavor, cosmetic and pharmaceutical

industries (Chattopadhyay et al 2002). The crop is propagated by stolons from which 30 to 60 cm erect and ascending branches arise. The leaves are sessile, smooth, lanceolate or ovate-lanceolate, sharply serrate, smooth above and glandular below; the apex is acute and up to 6.5 cm long. The flowers are sharply pointed, long and narrow hence the name spearmint is attributed to the plant (Guenther 1974). Essential oil biosynthesis in *M spicata* Lis strongly influenced by several intrinsic and

extrinsic factors including fertilizers, planting time, harvesting time and other agro-climatic factors (Singh and Misra 2000). Spearmint is well adapted to climatic conditions in tropical and subtropical areas. Aclimate with adequate and regular rainfall and good sunshine during its growing periods ensures a good yield. Both high water moisture content and water stress conditions decrease essential oil yield in this crop.

M spicata has proved out to be of great commercial importance in flavouring and pharmaceutical industries and consequently has fascinated the attention of the researchers. Transplanting time and spacing have greater influence on yield and oil content of M spicata (Mekonnen and Kassahun 2011). It responds well to nitrogen in conjugation with phosphorus and results in increased herbage and oil yield (Dua and Randhawa 2002). Moreover combined applications of inorganic and organic fertilizers have greater affect on improved spearmint essential oil yield.

Keeping in view the above facts a study was conducted in mid-hill conditions of Himachal Pradesh to access the effect of different fertilizers, spacings and transplanting time on growth and essential oil yield of *M spicata*.

MATERIAL and METHODS

Study was conducted at Dr YS Parmar University of Horticulture and

Forestry, Nauni, Solan, situated at 1200 m amsl under the sub-temperate zone of Himachal Pradesh. The experiment was laid out in split-plot design with three replications. The soil of experimental area was sandy loam in texture having pH 7.71, EC 0.43 m mhos/cm, available nitrogen, phosphorus, potassium 318, 12.60 and 285.97 kg/ha respectively. The treatment consisted of three dates of planting (15 January, 15 February and 15 March), three row spacings (30 x 30, 30 x 45 and 45 x 45 cm) and three organic fertilizers viz FYM (10 tons/ha), vermicompost (10 tons/ ha), Azotobacter (10 kg/ha) and one standard dose of NPK (120:50:40 kg/ha). Fresh, healthy and disease free suckers were transplanted in furrows at a depth of 4-5 cm as per the treatments. At the time of planting a light shower of water was given to enhance crop production. The crop was harvested twice, first from mid May to June end and second from mid August to mid September. The data on fresh herb and oil yield were recorded at the time of each harvest.

RESULTS and DISCUSSION

Effect of transplanting time

The studies revealed that the 15 February was the best transplanting time for *M spicata* as compared to 15 January and 15 March thereby giving higher values for plant height (36.82 cm), herb yield (173.15 q/ha), oil content (0.24%) and oil yield (50.89 kg/ha) (Tables 1-4). The low

Table 1. Effect of transplanting time, spacings, organic manures and fertilizers on plant height (cm) of Mentha spicata

Overall Mean		35.76	36.82	34.70			
	Mean	39.33 37.18 40.17 36.27 31.25 37.47 41.36 39.22 43.23 38.54 27.58 31.20 34.37 33.99 35.30 32.49 35.76	37.39 36.41 41.46 36.45 35.39 37.50 41.38 40.20 43.39 39.54 31.52 32.28 30.18 37.18 39.31 34.49 36.82	36.42 35.18 38.38 34.24 34.35 32.21 38.50 37.39 41.15 36.72 25.38 31.36 36.27 34.31 38.44 33.15 34.70	33.37	3.14 4.23 3.61	
	F_5	35.30	39.31	38.44	37.68		
	$\mathbf{F}_{_{4}}$	33.99	37.18	34.31	37.71 36.26 40.00 35.65 33.66 35.73 40.41 38.94 42.59 38.26 28.16 31.61 33.61 35.16 37.68 33.37		
$\mathbf{S}_{_{3}}$	\mathbf{F}_{3}	34.37	30.18	36.27	33.61		
	\mathbf{F}_{2}	31.20	32.28	31.36	31.61		
	$\mathbf{F}_{_{1}}$	27.58	31.52	25.38	28.16		
	Mean	38.54	39.54	36.72	38.26	3.12 4.26 4.78	
	\mathbf{F}_{5}	43.23	43.39	41.15	42.59		
\mathbf{S}_2	$\mathbf{F}_{_{4}}$	39.22	40.20	37.39	38.94		
	$\mathbf{F}_{_{3}}$	7 41.36) 41.38	38.50	3 40.41		
	\mathbf{F}_{2}	37.47	37.50	5 32.21	5 35.73		
	ᄺ	31.2	35.39	34.3	33.60		
	Mean	36.27	36.45	34.24	35.65	3.09 3.16 3.54	2.63 3.18 3.35 3.84
	$\overline{\mathrm{F}}_{5}$	3 40.17	41.46	38.38	40.00		
	$\overline{F}_{_{4}}$	3 37.18	9 36.41	2 35.18	36.26	(T)	E
S	$\mathbf{F}_{_{3}}$	_		_		ng time	ng time
	$\overline{\mathrm{F}}_{2}$	29.44 35.2]	32.43 34.55	27.93 33.29	29.93 34.35	Transplanting time (T) Fertilizer (F) T x F	Transplanting time (T) Spacing (S) Fertilizer (F) TxFxS
ıt	$\mathbf{F}_{_{1}}$	29.4	32.4	27.9	29.9	Transp Fertiliz T x F	D _{0.05} Tran Spac Ferti T x J
Treatment		$T_{_{1}}$	$T_{_{2}}$	$T_{_3}$	Mean	$^{\mathrm{CD}_{0.05}}$	Overall CD _{0.05} Tra Spe Fer Tx

 $T_1 = 15$ January, $T_2 = 15$ February, $T_3 = 15$ March, $S_1 = 30$ x 30 cm, $S_2 = 30$ x 45 cm, $S_3 = 45$ x 45 cm, $F_1 = 15$ No fertilizer, $F_2 = 15$ March, $F_3 = 15$ Mermicompost 10 tons/ha, $F_4 = Azotobacter$ 10 kg/ha, $F_5 = 15$ NPK (120:50:40 kg/ha)

Table 2. Effect of transplanting time, spacings, organic manures and fertilizers on herb yield (q/ha) of Mentha spicata

Treatment				$\mathbf{S}_{_{1}}$						\mathbf{S}_2					$\mathbf{S}_{_{3}}$				Overall
	Ħ,	\overline{F}_2	F.	π ₄	ъ.	Mean	F.	\overline{F}_2	H _e	П ₄	Ħ.	Mean F ₁	Г	F	F.	T 4	Ħ _e	Mean	Mean
T,	121.41	121.41 134.64	162.42	162.42 159.45 201.12		155.78	155.33	171.24	223.34	173.56	226.21 189.90	189.90	86.29	114.44	148.50	132.31	155.98	155.98 127.48	157.72
$\frac{\mathrm{T}}{\mathrm{J}_{3}}$	135.34	135.34 143.25 117.63 142.24	203.21 179.30	168.30 164.57	218.49 196.35	173.68 159.98	167.37 127.45	171.58 160.34	223.54 200.33	151.32 169.30	271.96 232.3	197.10 177.92	96.67 92.27	115.54 101.32	184.25 141.44	134.82 106.65	212.20 149.45	148.67	173.15 152.03
Mean	124.77	124.77 140.00		164.07	181.63 164.07 205.27 163.14		150.00	167.67	215.70	150.00 167.67 215.70 164.70 243.47 188.30 91.74	243.47	188.30	91.74	110.40	158.03	158.03 124.57 172.50 131.44	172.50	131.44	
${ m CD}_{0.05}$	Transpla Fertilizer T x F	Transplanting time (T) Fertilizer (F) TxF	e (T)			3.26 12.78 14.91						5.78 13.34 16.64						4.37 8.63 9.29	
Overall CD _{0.05}		Transplanting time	e (T)			5.28													

Table 3. Effect of transplanting time, spacings, organic manures and fertilizers on oil content (%) of Mentha spicata

Treatment				$\mathbf{S}_{_{1}}$					S	\mathbf{S}_2				$\mathbf{S}_{_{3}}$	3				Overall
	ᅲ.	\overline{F}_2	П _e	T ₄	Π_{κ}	Mean F ₁	ㅠ_	F ₂	т _е	T ₄	Ŧ,	Mean F	т	F ₂	П.	규 4	₽,	Mean	Mean
T	0.19 (0.43)	0.20 (0.44)	0.26	0.25	0.19 0.20 0.26 0.25 0.37 (0.43) (0.44) (0.57) (0.49) (0.60)	0.25	0.16 (0.38)	0.18 (0.41)	0.32 (0.57)	0.19 0.20 0.26 0.25 0.37 0.25 0.16 0.18 0.32 0.21 0.36 0.25 0.11 0.12 0.22 0.21 0.35 0.20 (0.43) (0.44) (0.57) (0.49) (0.60) (0.38) (0.41) (0.57) (0.43) (0.64) (0.64) (0.33) (0.33) (0.34) (0.46) (0.45) (0.59)	0.36 (0.64)	0.25	0.11 (0.33)	0.11 0.12 0.22 0.21 0.35 (0.33) (0.34) (0.46) (0.45) (0.59)	0.22 (0.46)	0.21 (0.45)	0.35 (0.59)		0.23
$\mathbf{T}_{_{2}}$	0.16 (0.39)	0.21 (0.45)	0.24	0.23	0.16 0.21 0.24 0.23 0.32 0.23 (0.39) (0.45) (0.48) (0.47) (0.56)	0.23	0.18 (0.43)	0.21 (0.46)	0.33 (0.56)	0.18 0.21 0.33 0.22 0.42 0.27 (0.43) (0.46) (0.56) (0.52) (0.60)	0.42 (0.60)		0.15 (0.38)	0.15 0.19 0.26 0.20 0.27 0.21 (0.38) (0.43) (0.50) (0.44) (0.51)	0.26 (0.50)	0.20 (0.44)	0.27 (0.51)		0.24
${f T}_3$	0.13 (0.36)	0.16 (0.39)	0.22	0.21	0.13 0.16 0.22 0.21 0.27 0.20 (0.36) (0.39) (0.46) (0.45) (0.51)	0.20	0.21 (0.45)	0.24 (0.48)	0.26 (0.50)	0.21 0.24 0.26 0.25 0.29 0.25 (0.45) (0.48) (0.50) (0.48) (0.53)	0.29 (0.53)	0.25	0.14 (0.37)	0.14 0.17 0.20 0.18 0.22 0.18 (0.37) (0.41) (0.44) (0.42) (0.43)	0.20 (0.44)	0.18 (0.42)	0.22 (0.43)		0.21
Mean	0.16	0.19	0.24	0.23	0.32	0.12	0.18	0.21	0.30	0.16 0.19 0.24 0.23 0.32 0.12 0.18 0.21 0.30 0.23 0.35 0.25 0.13 0.16 0.22 0.19 0.28 0.19	0.35	0.25	0.13	0.16	0.22	0.19	0.28	0.19	
$\mathrm{CD}_{0.05}$	Transplanting Fertilizer (F) T x F	olanting ser (F)	Transplanting time (T) Fertilizer (F) T x F	(T)		0.02 0.03 0.02						0.02 0.03 0.03						0.02 0.03 0.02	
Overall CD _{0.05} Tra Spa	^{0.05} Transplanti Spacing (S)	lanting g (S)	ransplanting time (T)	(T)		0.02													

Spacing (S) 0.02
Fertilizer (F) 0.02
T x F x S $T_1 = 15$ January, $T_2 = 15$ February, $T_3 = 15$ March, $S_1 = 30$ x 30 cm, $S_2 = 30$ x 45 cm, $S_3 = 45$ x 45 cm, $F_1 = 15$ No fertilizer, $F_2 = FYM$ 10 tons/ha, $F_3 = 15$ Vermicompost 10 tons/ha, $F_4 = Azorobacter$ 10 kg/ha, $F_5 = NPK$ (120:50:40 kg/ha)

6.02

5.82

5.56

ТхБ

Table 4. Effect of transplanting time, spacings, organic manures and fertilizers on oil yield (kg/ha) of Mentha spicata

Treatment	4.			$\mathbf{S}_{_{\mathbf{I}}}$					\mathbf{S}_{2}	2					S.				Overall
	ᅜ	F ₂	т _е	T ₄	₽,	Mean	편.	$\overline{\mathrm{F}}_{2}$	Н	T ₄	H _s	Mean	ᄺ	\overline{F}_2	F.	F ₄ F ₅ Mean F ₁ F ₂ F ₃ F ₄ F ₅ Mean F ₁ F ₂ F ₃ F ₄ F ₅		Mean	Mean
$T_{_1}$	23.49	25.42	46.24	35.45	66.58	40.75	28.78	33.49	51.43	40.37	80.47	46.91	18.54	22.35	41.34	30.38	23.49 25.42 46.24 35.45 66.58 40.75 28.78 33.49 51.43 40.37 80.47 46.91 18.54 22.35 41.34 30.38 54.44 33.41 40.36	33.41	40.36
T_2	30.39	37.24	62.45	43.38	73.17	48.01	34.12	50.43	67.41	62.22	81.38	59.11	23.31	36.23	54.23	47.47	30.39 37.24 62.45 43.38 73.17 48.01 34.12 50.43 67.41 62.22 81.38 59.11 23.31 36.23 54.23 47.47 66.48 45.54 50.89	45.54	50.89
$T_{_3}$	21.17	34.23	41.37	35.49	48.50	36.15	28.24	39.62	43.29	36.38	53.20	40.15	17.51	22.48	40.42	30.35	21.17 34.23 41.37 35.49 48.50 36.15 28.24 39.62 43.29 36.38 53.20 40.15 17.51 22.48 40.42 30.35 45.42 31.24 35.85	31.24	35.85
Mean	25.02	32.30	50.02	38.11	62.75	41.63	30.38	41.18	54.04	46.32	71.68	48.72	19.79	27.02	45.33	36.07	25.02 32.30 50.02 38.11 62.75 41.63 30.38 41.18 54.04 46.32 71.68 48.72 19.79 27.02 45.33 36.07 55.45 36.73	36.73	
CD _{0.05}	Transı	planting	Fransplanting time (T)	E		3.78						4.46						3.14	
	Fertili	Fertilizer (F)	,			5.27						5.08						5.79	

Tx F x S T₁ = 15 January, T₂ = 15 February, T₃ = 15 March, S₁ = NPK (120:50:40 kg/ha) Overall CD_{0.05}

Transplanting time (T)
Spacing (S)
Fertilizer (F)
T x F x S
T x F x S

yield in the crop transplanted on 15 January might be due to low temperature in the initial stages and higher temperature during 15 March. Moreover under delayed planting as a consequence of higher temperature plant height might have remained less due to less diversion of photosynthates for stem formation than leaves as reported by (Singh et al 1998). However the crop transplanted during February got all the favorable conditions for the growth of plants which might have contributed towards higher growth and yield parameters.

Effect of spacings

The effect of plant spacings on different growth and yield parameters (plant height, herb yield, oil content and oil yield) in *M spicata* revealed that spacing of 30 x 45 cm gave significant increase in all the growth and yield parameters. At this spacing average plant height, herb yield, oil content and oil yield were 38.26 cm, 188.30 q/ha, 0.25 per cent and 48.72 kg/ha respectively (Tables 1-4). Higher yield in 30 x 45 cm spacing might be due to more number of plants per unit area and less competition among plants for nutrients, light, water etc which contributed more towards increased herb yield and oil content. On the other hand low herb yield under wider row spacing might be due to less plant population per unit area.

Effect of organic manures and fertilizers

Application of adequate quantities of fertilizers is considered as one of the most

important factors for getting higher mint yields. In the present studies application of vermicompost in *M spicata* resulted in enhanced plant height (41.38 cm), herb yield (223.54 g/ha), oil content (0.33%) and oil yield (67.41 kg/ha) (Tables 1-4). These values were significantly higher than application of FYM, Azotobacter and PSB. Vermicompost has been reported to be a potential source of readily available source of plant nutrients, growth enhancing substances and number of beneficial microorganisms like nitrogen fixing, phosphorus solublising and cellulose decomposing organisms (Sultan 1997) which increases the uptake of nutrients by plants thereby giving more yield due to increased availability of nutrients (Rajkhowa et al 2000). All these values were compared with standard dose of NPK fertilizer (120:50:40 kg/ha).

In *M spicata* values of all the parameters like, height (43.39 cm), herb yield (271.96 q/ha), oil content (0.42%) and oil yield (81.38 kg/ha) were higher under optimum dose of NPK (120:50:40 kg/ha) as compared to other treatments. The essential oil content was increased significantly by nitrogen application during the second harvest ie 150 days after transplanting. As reported by Duhan et al (1975) more leaf area, size of epidermal cells and number of oil glands per unit area are the important factors which are responsible for higher essential oil content and herbage yield. Since nitrogen has well marked effect on the yield of herbage and

Kumar et al

essential oil and *Mentha* being a leafy crop responds favourably more to the higher doses of nitrogen (Bhardwaj and Kaushal 1990) thus application of nitrogen contributes more towards higher herbage yield in spearmint. The beneficial effect of phosphorus in influencing herbage yield is due to its role in various metabolic activities of plant which might have resulted in increased herbage yield. The results obtained in the present study are in agreement with those of Munsi and Mukherjee (1982) who reported a significant increase in the yield of Mentha oil by application of 60 kg P₂O₅/ha.

REFERENCES

- Bhardwaj SD and Kaushal AN 1990. Nitrogen levels and harvesting management studies on fresh herbage and oil yield in peppermint (*Mentha piperita* Linn). Indian Perfumer **34(1):** 30-41.
- Chattopadhyay A, Prasad A and Gupta N 2002. Response of spearmint (*Mentha spicata* L) to sulphur fertilization. Journal of Medicinal and Aromatic Plant Sciences **22**: 450-452.
- Dua VK and Randhawa GS 2002. Nitrogen requirement of different mentha species in potato, mentha species. I. Effect on growth and yield. Indian Perfumer **46(3):** 251-257

- Duhan SPS, Gulati BC and Bhattacharya AK 1975. Effect of nitrogen and spacing on the yield and quality of essential oil in Japanese mint (*Menth arvensis* Linn). Indian Journal of Agronomy **20(1):** 14-16.
- Guenther E 1974. The essential oils. Vol 3, Robert E Krieger Publishing Co Inc, New York, pp 586-687
- Mekonnen SA and Kassahun BM 2011. Effect of inter row spacing and harvesting time on growth and essential oil yield of spearmint (*Mentha spicata* L). International Journal of Sustainable Agriculture **39(2):** 39-43.
- Munsi PS and Mukherjee SK 1982. Effect of fertilizer treatments on yield and economics of cultivation of mentha, citronell and palmorosa. Indian Perfumer **26(2):** 74-80.
- Rajkhowa DJ, Gogoi AK, Kandali R and Rajkhowa KM 2000. Effect of vermicompost on green gram nutrition. Journal of Indian Society of Soil Science **48(11)**: 207-208.
- Singh A, Singh M and Singh K 1998. Use of nursery raised plantlets for delayed planting of Japanese mint (*Mentha arvensis* L) an appropriate technology for small holders in India. Indian Perfumer **42(2):** 92-103.
- Singh P and Misra A 2000. Influence of graded level of iron on growth and essential oil production in *Mentha spicata* L. Journal of Medicinal and Aromatic Plant Science **22:** 557-562.
- Sultan AI 1997. Vermicology, the biology of earthworms. Kalyani Publishers, New Delhi, pp 47-53.

Received: 14.5.2015 Accepted: 14.7.2015